Constraints-based Data Mining
- PhD Student:
- Abdelhamid Boudane
- Advisor :
- Lakhdar Saïs
- Co-Supervisors :
- Saïd Jabbour
- Yakoub Salhi
- PhD defended on :
- Sep 13, 2018 • Salle des thèses
In this thesis, We address the well-known clustering and association rules mining problems. Our first contribution introduces a new clustering framework, where complex objects are described by propositional formulas. First, we extend the two well-known k-means and hierarchical agglomerative clustering techniques to deal with these complex objects. Second, we introduce a new divisive algorithm for clustering objects represented explicitly by sets of models. Finally, we propose a propositional satisfiability based encoding of the problem of clustering propositional formulas without the need for an explicit representation of their models. In a second contribution, we propose a new propositional satisfiability based approach to mine association rules in a single step. The task is modeled as a propositional formula whose models correspond to the rules to be mined. To highlight the flexibility of our proposed framework, we also address other variants, namely the closed, minimal non-redundant, most general and indirect association rules mining tasks. Experiments on many datasets show that on the majority of the considered association rules mining tasks, our declarative approach achieves better performance than the state-of-the-art specialized techniques.
Keywords: Data mining, Clustering, Association rules, Propositional satisfiability.