The enumeration of all Maximal Satisfiable Subsets (MSSes) or all Minimal Correction Subsets (MCSes) of an unsatisfiable CNF Boolean formula is a useful and sometimes necessary step for solving a variety of important A.I. issues. Although the number of different MCSes of a CNF Boolean formula is exponential in the worst case, it remains low in many practical situations; this makes the tentative enumeration possibly successful in these latter cases. In the paper, a technique is introduced that boosts the currently most efficient practical approaches to enumerate MCSes. It implements a model rotation paradigm that allows the set of MCS es to be computed in an heuristically efficient way.