PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-LIN (optimisation, small integers, linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark84
Best CPU time to get the best result obtained on this benchmark1796.78
Has Objective FunctionYES
(Un)Satisfiability was proved
Best value of the objective function
Optimality of the best value was proved
Number of variables441
Total number of constraints441
Number of constraints which are clauses361
Number of constraints which are cardinality constraints (but not clauses)80
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint5
Number of terms in the objective function 361
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 361
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 361
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692478SAT84 1796.78 1797.11
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3741485SAT84 1796.79 1797.1
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693644SAT84 1796.85 1797.15
SCIP spx SCIP with SoPlex fixed (complete)3691312SAT84 1796.85 1797.15
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3741479SAT (TO)84 1800.16 1800.45
PB07: minisat+ 1.14 (complete)3722114SAT (TO)92 1800.1 1800.41
PB12: minisatp 1.0-2-g022594c (complete)3723925SAT (TO)93 1800.08 1800.41
PB09: bsolo 3.1 (complete)3741478SAT94 1798 1798.28
bsolo 3.2 (complete)3708314SAT94 1798 1798.28
PB07: Pueblo 1.4 (incomplete)3720775SAT95 1783.01 1783.28
SAT4J PB specific settings 2.3.2 snapshot (complete)3711076SAT (TO)95 1800.03 1790.46
pwbo 2.02 (complete)3726302SAT (TO)95 1800.06 900.244
pwbo 2.0 (complete)3704001SAT (TO)95 1800.1 900.328
PB07: bsolo 3.0.17 (complete)3741476SAT (TO)95 1800.11 1800.41
clasp 2.0.6-R5325 (opt) (complete)3709480SAT (TO)96 1800.02 1800.31
PB07: PB-clasp 2007-04-10 (complete)3741475SAT (TO)96 1802.11 1802.42
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3741481SAT (TO)97 1800.6 1142.84
PB11: Sat4j Res//CP 2.3.0 (complete)3741484SAT (TO)99 1800.13 1120.84
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3689502SAT (TO)104 1800.15 941.628
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3741483SAT107 1789.74 1790.02
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3741477SAT (TO)120 1800.04 1795.62
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3741480SAT (TO)121 1800.76 1797.19
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3689503SAT (TO)129 1800.06 1789.66
wbo 1.7 (complete)3705522? 1799.51 1800.01
wbo 1.72 (complete)3727823? 1799.92 1800.01
toysat 2012-06-01 (complete)3725521? (TO) 1800.03 1800.31
toysat 2012-05-17 (complete)3707148? (TO) 1800.03 1800.31
npSolver inc-topdown-quickBound (fixed) (complete)3752377? (TO) 1800.06 1800.41
pb2sat 2012-05-19 (complete)3696836? (TO) 1800.09 1800.51
npSolver inc-topDown (complete)3698432? (TO) 1800.09 1800.41
npSolver inc-topDown (fixed) (complete)3747589? (TO) 1800.09 1800.41
pb2satCp2 2012-05-19 (complete)3695240? (TO) 1800.09 1800.51
npSolver inc-topdown-quickBound (complete)3703220? (TO) 1800.11 1800.41
npSolver inc (fixed) (complete)3749185? (TO) 1800.11 1800.41
npSolver inc (complete)3700028? (TO) 1800.11 1800.41
PB10: pb_cplex 2010-06-29 (complete)3741482? (TO) 1800.12 547.616
npSolver 1.0 (complete)3701624? (TO) 1800.12 1800.41
npSolver 1.0 (fixed) (complete)3750781? (TO) 1800.12 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 84
Solution found:
-x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419
-x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396
-x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373
-x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 x361 -x360 -x359 -x358 -x357 -x356 x355 x354 -x353 -x352 -x351 -x350 x349
x348 -x347 -x346 -x345 -x344 x343 -x342 -x341 -x340 -x339 x338 -x337 -x336 x335 -x334 -x333 -x332 -x331 x330 -x329 -x328 x327 -x326 -x325
-x324 -x323 x322 -x321 x320 -x319 -x318 -x317 -x316 x315 -x314 -x313 -x312 x311 -x310 -x309 -x308 -x307 -x306 x305 -x304 -x303 -x302 -x301
-x300 x299 -x298 -x297 -x296 -x295 x294 -x293 -x292 -x291 x290 -x289 x288 -x287 -x286 x285 -x284 x283 -x282 -x281 -x280 -x279 x278 -x277
-x276 -x275 -x274 x273 -x272 -x271 -x270 -x269 -x268 x267 -x266 -x265 -x264 -x263 x262 -x261 -x260 -x259 -x258 x257 -x256 -x255 -x254 -x253
-x252 x251 -x250 -x249 -x248 -x247 x246 -x245 -x244 -x243 -x242 x241 -x240 -x239 -x238 -x237 x236 -x235 x234 -x233 -x232 -x231 x230 -x229
-x228 -x227 -x226 x225 -x224 -x223 -x222 -x221 x220 -x219 -x218 -x217 -x216 x215 -x214 -x213 -x212 x211 -x210 x209 -x208 -x207 -x206 -x205
x204 -x203 -x202 -x201 -x200 x199 -x198 -x197 -x196 -x195 x194 -x193 -x192 -x191 -x190 -x189 x188 -x187 -x186 -x185 -x184 x183 -x182 -x181
-x180 -x179 x178 -x177 -x176 -x175 -x174 -x173 x172 -x171 -x170 -x169 -x168 x167 -x166 -x165 -x164 -x163 x162 -x161 -x160 -x159 -x158 x157
-x156 x155 -x154 -x153 x152 x151 -x150 -x149 -x148 -x147 x146 -x145 -x144 -x143 -x142 x141 -x140 -x139 -x138 -x137 x136 -x135 -x134 -x133
-x132 -x131 x130 -x129 -x128 -x127 -x126 x125 -x124 -x123 -x122 -x121 x120 -x119 -x118 -x117 -x116 x115 -x114 x113 -x112 -x111 -x110 x109
-x108 -x107 -x106 -x105 x104 -x103 -x102 -x101 -x100 x99 -x98 -x97 -x96 -x95 -x94 -x93 x92 -x91 -x90 -x89 x88 -x87 -x86 -x85 -x84 x83 -x82
-x81 -x80 -x79 x78 -x77 x76 -x75 -x74 -x73 -x72 x71 -x70 -x69 -x68 x67 -x66 -x65 -x64 -x63 x62 -x61 x60 -x59 -x58 -x57 -x56 x55 -x54 -x53
-x52 -x51 x50 -x49 -x48 -x47 x46 x45 -x44 -x43 -x42 -x41 -x40 x39 x38 -x37 -x36 -x35 x34 -x33 -x32 -x31 x30 -x29 -x28 -x27 -x26 -x25 -x24
x23 -x22 -x21 -x20 -x19 -x18 x17 -x16 -x15 -x14 x13 -x12 -x11 -x10 x9 -x8 -x7 x6 -x5 -x4 -x3 x2 -x1