PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark-33
Best CPU time to get the best result obtained on this benchmark1796.8
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -29
Optimality of the best value was proved NO
Number of variables400
Total number of constraints601
Number of constraints which are clauses200
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints401
Minimum length of a constraint2
Maximum length of a constraint400
Number of terms in the objective function 200
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 200
Number of bits of the sum of numbers in the objective function 8
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 400
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)12452
Sum of products size (including duplicates)24904
Number of different products6226
Sum of products size12452

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3737538SAT-33 1796.8 1797.1
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692585SAT-33 1796.81 1797.11
clasp 2.0.6-R5325 (opt) (complete)3709587SAT (TO)-29 1800.02 1800.31
PB07: minisat+ 1.14 (complete)3721737SAT (TO)-29 1800.03 1800.41
SCIP spx SCIP with SoPlex fixed (complete)3691419SAT-27 1796.76 1797.06
PB07: Pueblo 1.4 (incomplete)3720488SAT-26 1783.01 1783.3
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3737536SAT-26 1789.79 1790.07
SAT4J PB specific settings 2.3.2 snapshot (complete)3711183SAT (TO)-26 1800.51 1788.35
PB09: bsolo 3.1 (complete)3737531SAT-24 1798.04 1798.69
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3737533SAT (TO)-24 1800.05 1784.79
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693751SAT-23 1796.78 1797.06
bsolo 3.2 (complete)3708421SAT-23 1798.01 1798.62
pwbo 2.02 (complete)3726764SAT (TO)-23 1800.05 900.331
PB11: Sat4j Res//CP 2.3.0 (complete)3737537SAT (TO)-23 1800.07 915.24
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3737534SAT (TO)-23 1800.11 918.544
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688748SAT (TO)-22 1800.45 912.959
pwbo 2.0 (complete)3704463SAT (TO)-20 1800.13 900.337
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688749SAT (TO)-17 1800.75 1789.45
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3737532SAT-8 1794.55 1794.84
PB07: bsolo 3.0.17 (complete)3737529SAT (TO)-8 1800.03 1800.72
PB12: minisatp 1.0-2-g022594c (complete)3724032? 0.004998 0.00656198
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3737530? 1.76473 1.18641
wbo 1.7 (complete)3705659? 1799.62 1800.01
wbo 1.72 (complete)3727960? 1799.83 1800.01
PB07: PB-clasp 2007-04-10 (complete)3737528? (TO) 1800.04 1479.62
pb2sat 2012-05-19 (complete)3696943? (TO) 1800.07 1800.51
npSolver inc-topdown-quickBound (fixed) (complete)3752484? (TO) 1800.07 1800.41
npSolver inc-topDown (fixed) (complete)3747696? (TO) 1800.07 1800.41
npSolver 1.0 (fixed) (complete)3750888? (TO) 1800.08 1800.41
npSolver inc-topdown-quickBound (complete)3703327? (TO) 1800.1 1800.51
toysat 2012-05-17 (complete)3707255? (TO) 1800.1 1800.41
toysat 2012-06-01 (complete)3725628? (TO) 1800.1 1800.41
npSolver inc (fixed) (complete)3749292? (TO) 1800.11 1800.41
npSolver 1.0 (complete)3701731? (TO) 1800.11 1800.41
npSolver inc-topDown (complete)3698539? (TO) 1800.12 1800.51
pb2satCp2 2012-05-19 (complete)3695347? (TO) 1800.12 1800.51
npSolver inc (complete)3700135? (TO) 1800.12 1800.41
PB10: pb_cplex 2010-06-29 (complete)3737535? (TO) 1800.36 678.326

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -33
Solution found:
-x383 -x316 -x245 -x260 -x248 -x378 -x310 -x305 x293 -x257 -x230 -x355 -x387 -x352 x380 -x394 -x240 -x393 x385 -x376 -x301 x360 x290 -x297
-x350 -x209 -x338 -x259 -x218 -x306 -x334 x323 -x348 -x231 -x388 -x312 -x336 -x357 x339 -x296 -x255 -x239 x369 x286 -x299 -x329 -x373 -x330
-x232 -x311 -x226 -x256 -x358 x372 -x284 -x322 -x370 -x326 x283 -x246 -x319 -x242 -x396 -x268 x252 -x346 -x222 -x308 -x204 x364 x356 -x331
-x318 -x292 -x262 -x258 -x241 x397 -x270 -x237 -x313 -x210 x351 x371 -x207 -x302 -x320 x315 x377 -x344 -x353 x379 -x219 -x392 -x203 x395
-x381 -x375 -x300 -x213 -x235 -x295 -x264 -x279 -x275 -x345 -x291 -x340 x289 -x269 -x234 -x317 -x243 -x390 -x228 -x202 -x398 x363 x359 -x349
-x337 -x333 -x307 -x303 -x298 -x288 x282 -x251 -x247 -x244 -x212 -x324 -x386 -x354 -x389 -x223 -x294 -x224 -x236 -x266 -x214 -x254 -x272
-x341 -x362 x400 -x309 -x285 -x328 -x347 -x201 -x391 -x367 x365 -x361 -x343 -x342 -x335 x327 -x325 -x314 x304 x281 -x278 -x271 -x267 -x265
-x263 -x238 -x225 -x220 -x217 -x216 -x208 -x205 -x368 -x253 -x384 x332 -x374 -x280 -x206 -x215 x287 -x229 -x221 -x399 -x261 -x249 -x227
-x382 -x274 x250 -x321 -x233 -x277 -x273 -x211 -x366 -x276 -x200 -x199 x198 -x197 -x196 -x195 -x194 x193 x192 x191 x190 -x189 -x188 -x187
-x186 -x185 x184 x183 -x182 -x181 -x180 -x179 -x178 -x177 -x176 -x175 x174 -x173 -x172 -x171 x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163
-x162 x161 -x160 -x159 -x158 -x157 -x156 x155 x154 -x153 -x152 -x151 x150 x149 -x148 -x147 -x146 x145 -x144 -x143 x142 -x141 x140 -x139
-x138 -x137 x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 -x123 -x122 x121 -x120 -x119 -x118 x117 -x116 -x115
-x114 -x113 -x112 x111 x110 -x109 -x108 -x107 -x106 -x105 -x104 x103 -x102 -x101 -x100 -x99 -x98 x97 -x96 x95 -x94 -x93 -x92 -x91 -x90 -x89
-x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61
-x60 -x59 -x58 -x57 -x56 x55 -x54 -x53 -x52 x51 -x50 x49 -x48 -x47 -x46 -x45 -x44 -x43 -x42 -x41 -x40 x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32
-x31 x30 -x29 -x28 x27 x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 x17 -x16 -x15 -x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2