PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark3
Best CPU time to get the best result obtained on this benchmark0.086986
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 3
Optimality of the best value was proved YES
Number of variables168
Total number of constraints15
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints15
Minimum length of a constraint8
Maximum length of a constraint80
Number of terms in the objective function 8
Biggest coefficient in the objective function 128
Number of bits for the biggest coefficient in the objective function 8
Sum of the numbers in the objective function 255
Number of bits of the sum of numbers in the objective function 8
Biggest number in a constraint 32768
Number of bits of the biggest number in a constraint 16
Biggest sum of numbers in a constraint 130560
Number of bits of the biggest sum of numbers17
Number of products (including duplicates)448
Sum of products size (including duplicates)896
Number of different products448
Sum of products size896

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB07: minisat+ 1.14 (complete)3721653OPT3 0.086986 0.0869179
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693849OPT3 0.176972 0.177188
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692683OPT3 0.178972 0.179958
SCIP spx SCIP with SoPlex fixed (complete)3691517OPT3 0.183971 0.18546
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736614OPT3 1.60476 1.60761
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736608OPT3 2.03869 2.04357
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736612OPT3 8.62369 8.62622
PB09: bsolo 3.1 (complete)3736607OPT3 31.6502 31.6598
npSolver inc (fixed) (complete)3749390OPT3 40.8038 40.814
npSolver inc-topDown (fixed) (complete)3747794OPT3 41.3407 41.3518
npSolver 1.0 (fixed) (complete)3750986OPT3 42.9245 42.982
pwbo 2.02 (complete)3726862OPT3 60.56 30.3639
pwbo 2.0 (complete)3704561OPT3 62.2455 31.1272
clasp 2.0.6-R5325 (opt) (complete)3709685OPT3 71.2092 71.2261
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688581OPT3 78.73 77.0171
PB11: Sat4j Res//CP 2.3.0 (complete)3736613OPT3 84.7401 44.848
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688580OPT3 104.658 52.3941
wbo 1.72 (complete)3728058OPT3 127.748 127.795
wbo 1.7 (complete)3705757OPT3 128.129 128.174
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736610OPT3 129.454 67.1479
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736606OPT3 230.12 226.468
PB07: bsolo 3.0.17 (complete)3736605OPT3 256.805 256.856
PB07: Pueblo 1.4 (incomplete)3720404OPT3 388.097 388.159
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736609OPT3 881.231 877.346
bsolo 3.2 (complete)3708519OPT3 1117.07 1117.24
PB07: PB-clasp 2007-04-10 (complete)3736604OPT3 1514.02 1514.37
SAT4J PB specific settings 2.3.2 snapshot (complete)3711281SAT3 60.51 59.1372
PB12: minisatp 1.0-2-g022594c (complete)3724130? 0.005998 0.00685998
toysat 2012-05-17 (complete)3707353? (TO) 1800.01 1800.31
toysat 2012-06-01 (complete)3725726? (TO) 1800.03 1800.31
pb2sat 2012-05-19 (complete)3697041? (TO) 1800.06 1804.22
npSolver inc-topdown-quickBound (fixed) (complete)3752582? (TO) 1800.06 1802.81
pb2satCp2 2012-05-19 (complete)3695445? (TO) 1800.09 1805.62
PB10: pb_cplex 2010-06-29 (complete)3736611? (TO) 1800.23 566.817
npSolver inc (complete)3700233Wrong UNSAT 322 322.628
npSolver inc-topdown-quickBound (complete)3703425Wrong UNSAT 323.41 324.286
npSolver inc-topDown (complete)3698637Wrong UNSAT 326.48 329.955
npSolver 1.0 (complete)3701829Wrong UNSAT 340.893 342.66

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 3
Solution found:
x1 x2 -x3 -x4 -x5 -x6 -x7 -x8 x9 -x10 x11 x12 x13 x14 -x15 x16 x17 x18 -x19 -x20 -x21 -x22 -x23 -x24 x25 x26 -x27 -x28 -x29 -x30 -x31 -x32
x33 x34 -x35 -x36 -x37 -x38 -x39 -x40 x41 x42 -x43 -x44 -x45 -x46 -x47 -x48 x49 x50 -x51 -x52 -x53 -x54 -x55 -x56 x57 x58 -x59 -x60 -x61
-x62 -x63 -x64 x169 x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181 -x182 -x183 -x184 x185 x186 -x187 -x188 -x189
-x190 -x191 -x192 x193 x194 -x195 -x196 -x197 -x198 -x199 -x200 x201 x202 -x203 -x204 -x205 -x206 -x207 -x208 x209 x210 -x211 -x212 -x213
-x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 x225 x226 -x227 -x228 -x229 -x230 -x231 -x232 x65 x66 x67 -x68 x69 x70
-x71 -x72 -x113 x114 -x115 -x116 -x117 -x118 -x119 -x120 x233 x234 x235 -x236 x237 x238 -x239 -x240 x241 x242 x243 -x244 x245 x246 -x247
-x248 -x249 -x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270
-x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293
-x294 -x295 -x296 x73 -x74 x75 -x76 -x77 x78 -x79 x80 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 x297 -x298 x299 -x300 -x301 x302 -x303
x304 x305 -x306 x307 -x308 -x309 x310 -x311 x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327
-x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350
-x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 x81 x82 x83 x84 -x85 x86 x87 x88 x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136
x361 x362 x363 x364 -x365 x366 x367 x368 x369 x370 x371 x372 -x373 x374 x375 x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385
-x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408
-x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 x89 -x90 x91 x92 -x93 -x94 x95 x96 -x137
x138 -x139 -x140 -x141 -x142 -x143 -x144 x425 -x426 x427 x428 -x429 -x430 x431 x432 x433 -x434 x435 x436 -x437 -x438 x439 x440 -x441 -x442
-x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465
-x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488
x97 x98 x99 -x100 -x101 x102 x103 -x104 -x145 x146 -x147 -x148 -x149 -x150 -x151 -x152 x489 x490 x491 -x492 -x493 x494 x495 -x496 x497 x498
x499 -x500 -x501 x502 x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522
-x523 -x524 -x525 -x526 -x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545
-x546 -x547 -x548 -x549 -x550 -x551 -x552 x105 -x106 x107 -x108 x109 x110 -x111 -x112 x153 -x154 -x155 -x156 -x157 -x158 -x159 -x160 x553
-x554 x555 -x556 x557 x558 -x559 -x560 x561 -x562 x563 -x564 x565 x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577
-x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600
-x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x161 -x162 -x163 -x164 -x165 -x166 -x167