PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark2
Best CPU time to get the best result obtained on this benchmark0.05599
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 2
Optimality of the best value was proved YES
Number of variables162
Total number of constraints19
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints19
Minimum length of a constraint6
Maximum length of a constraint48
Number of terms in the objective function 6
Biggest coefficient in the objective function 32
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 63
Number of bits of the sum of numbers in the objective function 6
Biggest number in a constraint 2048
Number of bits of the biggest number in a constraint 12
Biggest sum of numbers in a constraint 8064
Number of bits of the biggest sum of numbers13
Number of products (including duplicates)324
Sum of products size (including duplicates)648
Number of different products324
Sum of products size648

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB07: minisat+ 1.14 (complete)3721643OPT2 0.05599 0.0563889
clasp 2.0.6-R5325 (opt) (complete)3709666OPT2 0.513921 0.515117
npSolver inc (fixed) (complete)3749371OPT2 0.533918 0.662447
npSolver inc-topDown (fixed) (complete)3747775OPT2 0.958853 0.960605
pwbo 2.02 (complete)3726843OPT2 1.2838 0.63904
pwbo 2.0 (complete)3704542OPT2 1.3238 0.655617
npSolver 1.0 (fixed) (complete)3750967OPT2 1.37279 1.45123
wbo 1.72 (complete)3728039OPT2 1.73473 1.72979
wbo 1.7 (complete)3705738OPT2 1.73474 1.73412
PB07: bsolo 3.0.17 (complete)3736495OPT2 1.9667 1.96968
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688561OPT2 2.6236 1.54379
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736496OPT2 2.77358 2.32881
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736499OPT2 3.70444 3.20863
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692664OPT2 5.02623 5.02836
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688560OPT2 5.39318 2.24042
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736498OPT2 5.9411 5.94779
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736500OPT2 5.99409 4.23694
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736502OPT2 6.00409 6.00604
PB11: Sat4j Res//CP 2.3.0 (complete)3736503OPT2 6.30204 3.21518
PB09: bsolo 3.1 (complete)3736497OPT2 8.38472 8.38594
SCIP spx SCIP with SoPlex fixed (complete)3691498OPT2 9.79251 9.79561
pb2satCp2 2012-05-19 (complete)3695426OPT2 17.2054 17.453
PB07: Pueblo 1.4 (incomplete)3720394OPT2 18.0253 18.0319
toysat 2012-06-01 (complete)3725707OPT2 18.6532 18.6576
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736504OPT2 24.8732 24.8857
bsolo 3.2 (complete)3708500OPT2 29.2006 29.2063
pb2sat 2012-05-19 (complete)3697022OPT2 30.4847 15.4063
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693830OPT2 37.0244 37.0419
toysat 2012-05-17 (complete)3707334OPT2 43.5584 43.571
PB07: PB-clasp 2007-04-10 (complete)3736494OPT2 45.747 45.7753
SAT4J PB specific settings 2.3.2 snapshot (complete)3711262SAT2 3.11352 2.62964
PB12: minisatp 1.0-2-g022594c (complete)3724111? 0.003998 0.00668507
npSolver inc-topdown-quickBound (complete)3703406? (TO) 1800.03 1800.92
npSolver 1.0 (complete)3701810? (TO) 1800.07 1800.41
npSolver inc-topDown (complete)3698618? (TO) 1800.09 1800.41
npSolver inc (complete)3700214? (TO) 1800.13 1800.41
PB10: pb_cplex 2010-06-29 (complete)3736501? (TO) 1800.13 541.416
npSolver inc-topdown-quickBound (fixed) (complete)3752563? (TO) 1800.17 1810.61

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 2
Solution found:
-x1 x2 -x3 -x4 -x5 -x6 x7 -x8 x9 -x10 -x11 -x12 x13 x14 -x15 -x16 -x17 -x18 x19 x20 -x21 -x22 -x23 -x24 x25 x26 -x27 -x28 -x29 -x30 x31 x32
-x33 -x34 -x35 -x36 x37 x38 -x39 -x40 -x41 -x42 x43 x44 -x45 -x46 -x47 -x48 x49 x50 -x51 -x52 -x53 -x54 x55 x56 -x57 -x58 -x59 -x60 -x163
x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 x176 -x177 -x178 -x179 -x180 -x181 -x182 -x183 -x184 -x185 -x186
-x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x61 x62 -x63 x64 -x65 -x66 -x109 -x110 -x111 -x112 -x113 -x114
-x199 x200 -x201 x202 -x203 -x204 -x205 x206 -x207 x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222
-x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x67 x68 x69 x70 x71 -x72 -x115 -x116 -x117 -x118 -x119 -x120 -x235
x236 x237 x238 x239 -x240 -x241 x242 x243 x244 x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259
-x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x73 x74 -x75 x76 x77 -x78 x121 -x122 -x123 -x124 -x125 -x126 -x271 x272
-x273 x274 x275 -x276 -x277 x278 -x279 x280 x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296
-x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x79 x80 x81 x82 -x83 -x84 x127 -x128 -x129 -x130 -x131 -x132 -x307 x308 x309
x310 -x311 -x312 -x313 x314 x315 x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333
-x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x85 x86 -x87 x88 -x89 x90 -x133 -x134 -x135 -x136 -x137 -x138 -x343 x344 -x345 x346
-x347 x348 -x349 x350 -x351 x352 -x353 x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370
-x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x91 x92 x93 x94 x95 x96 x139 -x140 -x141 -x142 -x143 -x144 -x379 x380 x381 x382 x383 x384
-x385 x386 x387 x388 x389 x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408
-x409 -x410 -x411 -x412 -x413 -x414 -x97 x98 -x99 x100 x101 x102 -x145 x146 -x147 -x148 -x149 -x150 -x415 x416 -x417 x418 x419 x420 -x421
x422 -x423 x424 x425 x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445
-x446 -x447 -x448 -x449 -x450 -x103 x104 x105 x106 -x107 x108 -x151 x152 -x153 -x154 -x155 -x156 -x451 x452 x453 x454 -x455 x456 -x457 x458
x459 x460 -x461 x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482
-x483 -x484 -x485 -x486 -x157 x158 -x159 -x160 -x161 -x162