PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark3
Best CPU time to get the best result obtained on this benchmark0.053991
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 3
Optimality of the best value was proved YES
Number of variables126
Total number of constraints13
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints13
Minimum length of a constraint7
Maximum length of a constraint63
Number of terms in the objective function 7
Biggest coefficient in the objective function 64
Number of bits for the biggest coefficient in the objective function 7
Sum of the numbers in the objective function 127
Number of bits of the sum of numbers in the objective function 7
Biggest number in a constraint 8192
Number of bits of the biggest number in a constraint 14
Biggest sum of numbers in a constraint 32512
Number of bits of the biggest sum of numbers15
Number of products (including duplicates)294
Sum of products size (including duplicates)588
Number of different products294
Sum of products size588

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB07: minisat+ 1.14 (complete)3721636OPT3 0.053991 0.054265
SCIP spx SCIP with SoPlex fixed (complete)3691512OPT3 0.066989 0.067535
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693844OPT3 0.075987 0.0769819
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692678OPT3 0.12598 0.126312
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736427OPT3 0.149976 0.150863
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736425OPT3 0.261959 0.262249
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736421OPT3 2.81357 2.81531
clasp 2.0.6-R5325 (opt) (complete)3709680OPT3 5.20021 5.20207
npSolver inc-topDown (fixed) (complete)3747789OPT3 5.79412 5.80148
pwbo 2.0 (complete)3704556OPT3 5.9331 2.96527
npSolver inc (fixed) (complete)3749385OPT3 6.03508 6.0408
pwbo 2.02 (complete)3726857OPT3 6.04208 3.02681
wbo 1.7 (complete)3705752OPT3 6.604 6.59516
wbo 1.72 (complete)3728053OPT3 6.61399 6.60793
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688547OPT3 7.51186 6.48212
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736419OPT3 10.0125 9.46188
npSolver 1.0 (fixed) (complete)3750981OPT3 10.0375 10.0531
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736422OPT3 11.0643 10.3334
PB07: bsolo 3.0.17 (complete)3736418OPT3 16.8104 16.8178
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688546OPT3 17.2914 8.24172
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736423OPT3 18.4622 11.255
PB07: Pueblo 1.4 (incomplete)3720387OPT3 18.6232 18.6309
PB11: Sat4j Res//CP 2.3.0 (complete)3736426OPT3 23.0195 11.288
bsolo 3.2 (complete)3708514OPT3 24.4993 24.5032
PB07: PB-clasp 2007-04-10 (complete)3736417OPT3 76.3464 76.3653
toysat 2012-06-01 (complete)3725721OPT3 824.791 824.925
toysat 2012-05-17 (complete)3707348OPT3 921.312 921.471
pb2satCp2 2012-05-19 (complete)3695440OPT3 1017.08 1017.43
pb2sat 2012-05-19 (complete)3697036OPT3 1164.19 1164.52
SAT4J PB specific settings 2.3.2 snapshot (complete)3711276SAT3 8.62369 7.37941
PB12: minisatp 1.0-2-g022594c (complete)3724125? 0.005998 0.00654597
npSolver inc-topDown (complete)3698632? (TO) 1800.02 1800.52
npSolver inc (complete)3700228? (TO) 1800.04 1800.52
npSolver inc-topdown-quickBound (complete)3703420? (TO) 1800.08 1800.72
npSolver 1.0 (complete)3701824? (TO) 1800.1 1800.62
npSolver inc-topdown-quickBound (fixed) (complete)3752577? (TO) 1800.11 1787.11
PB10: pb_cplex 2010-06-29 (complete)3736424? (TO) 1800.31 611.517
PB09: bsolo 3.1 (complete)3736420Wrong UNSAT 11.1913 11.1956

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 3
Solution found:
x1 x2 -x3 -x4 -x5 -x6 -x7 x8 -x9 x10 -x11 x12 -x13 -x14 x15 x16 -x17 -x18 -x19 -x20 -x21 x22 x23 -x24 -x25 -x26 -x27 -x28 x29 x30 -x31 -x32
-x33 -x34 -x35 x36 x37 -x38 -x39 -x40 -x41 -x42 x43 x44 -x45 -x46 -x47 -x48 -x49 x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136
-x137 -x138 -x139 -x140 x141 x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 x155 x156 -x157 -x158 -x159 -x160
-x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 x50 x51 x52 x53 x54 x55 -x56 -x85 -x86 -x87 -x88
-x89 -x90 -x91 x176 x177 x178 x179 x180 x181 -x182 x183 x184 x185 x186 x187 x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198
-x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221
-x222 -x223 -x224 x57 -x58 x59 x60 x61 x62 -x63 x92 -x93 -x94 -x95 -x96 -x97 -x98 x225 -x226 x227 x228 x229 x230 -x231 x232 -x233 x234 x235
x236 x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258
-x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 x64 x65 x66 -x67 x68 x69 -x70 x99 -x100 -x101
-x102 -x103 -x104 -x105 x274 x275 x276 -x277 x278 x279 -x280 x281 x282 x283 -x284 x285 x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294
-x295 -x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317
-x318 -x319 -x320 -x321 -x322 x71 -x72 x73 -x74 -x75 x76 -x77 x106 -x107 -x108 -x109 -x110 -x111 -x112 x323 -x324 x325 -x326 -x327 x328
-x329 x330 -x331 x332 -x333 -x334 x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352
-x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 x78 x79 x80 x81 -x82 x83
x84 -x113 -x114 -x115 -x116 -x117 -x118 -x119 x372 x373 x374 x375 -x376 x377 x378 x379 x380 x381 x382 -x383 x384 x385 -x386 -x387 -x388
-x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411
-x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x120 x121 -x122 -x123 -x124 -x125 -x126