PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark3
Best CPU time to get the best result obtained on this benchmark0.062989
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 3
Optimality of the best value was proved YES
Number of variables147
Total number of constraints15
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints15
Minimum length of a constraint7
Maximum length of a constraint63
Number of terms in the objective function 7
Biggest coefficient in the objective function 64
Number of bits for the biggest coefficient in the objective function 7
Sum of the numbers in the objective function 127
Number of bits of the sum of numbers in the objective function 7
Biggest number in a constraint 8192
Number of bits of the biggest number in a constraint 14
Biggest sum of numbers in a constraint 32512
Number of bits of the biggest sum of numbers15
Number of products (including duplicates)343
Sum of products size (including duplicates)686
Number of different products343
Sum of products size686

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB07: minisat+ 1.14 (complete)3721634OPT3 0.062989 0.063113
SCIP spx SCIP with SoPlex fixed (complete)3691504OPT3 0.074987 0.075624
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693836OPT3 0.085986 0.087401
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692670OPT3 0.133979 0.134846
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736405OPT3 0.168973 0.169906
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736403OPT3 0.295954 0.297157
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736399OPT3 3.21751 3.21975
wbo 1.72 (complete)3728045OPT3 6.06508 6.06478
wbo 1.7 (complete)3705744OPT3 6.39503 6.39257
npSolver inc (fixed) (complete)3749377OPT3 6.76997 6.77674
clasp 2.0.6-R5325 (opt) (complete)3709672OPT3 7.80381 7.80624
npSolver inc-topDown (fixed) (complete)3747781OPT3 8.08177 8.08806
pwbo 2.0 (complete)3704548OPT3 8.93364 4.46932
npSolver 1.0 (fixed) (complete)3750973OPT3 9.60054 9.60792
pwbo 2.02 (complete)3726849OPT3 9.80251 4.91691
PB07: Pueblo 1.4 (incomplete)3720385OPT3 10.8274 10.8325
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688543OPT3 10.9023 9.69969
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736397OPT3 14.5518 13.8836
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736400OPT3 15.5516 14.8041
PB11: Sat4j Res//CP 2.3.0 (complete)3736404OPT3 16.2605 7.75486
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688542OPT3 19.609 9.86999
PB09: bsolo 3.1 (complete)3736398OPT3 20.3619 20.3706
PB07: bsolo 3.0.17 (complete)3736396OPT3 21.0028 21.0094
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736401OPT3 22.8315 15.2781
bsolo 3.2 (complete)3708506OPT3 55.6385 55.6517
PB07: PB-clasp 2007-04-10 (complete)3736395OPT3 498.435 498.581
toysat 2012-06-01 (complete)3725713OPT3 616.706 616.808
toysat 2012-05-17 (complete)3707340OPT3 666.123 666.236
pb2sat 2012-05-19 (complete)3697028OPT3 1279.91 1280.93
pb2satCp2 2012-05-19 (complete)3695432OPT3 1330.4 1330.72
SAT4J PB specific settings 2.3.2 snapshot (complete)3711268SAT3 10.3124 9.06328
PB12: minisatp 1.0-2-g022594c (complete)3724117? 0.005998 0.00765894
npSolver inc-topDown (complete)3698624? (TO) 1800.03 1800.62
npSolver inc (complete)3700220? (TO) 1800.05 1800.42
npSolver 1.0 (complete)3701816? (TO) 1800.07 1800.62
npSolver inc-topdown-quickBound (complete)3703412? (TO) 1800.1 1800.72
PB10: pb_cplex 2010-06-29 (complete)3736402? (TO) 1800.1 553.237
npSolver inc-topdown-quickBound (fixed) (complete)3752569? (TO) 1800.29 1804.02

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 3
Solution found:
x1 x2 -x3 -x4 -x5 -x6 -x7 x8 -x9 -x10 x11 -x12 x13 -x14 x15 x16 -x17 -x18 -x19 -x20 -x21 x22 x23 -x24 -x25 -x26 -x27 -x28 x29 x30 -x31 -x32
-x33 -x34 -x35 x36 x37 -x38 -x39 -x40 -x41 -x42 x43 x44 -x45 -x46 -x47 -x48 -x49 x50 x51 -x52 -x53 -x54 -x55 -x56 x148 x149 -x150 -x151
-x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 x169 x170 -x171 -x172 -x173 -x174
-x175 -x176 -x177 -x178 -x179 -x180 -x181 -x182 x183 x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 x57 x58
-x59 x60 x61 x62 x63 -x99 -x100 -x101 -x102 -x103 -x104 -x105 x197 x198 -x199 x200 x201 x202 x203 x204 x205 -x206 x207 x208 x209 x210 -x211
-x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234
-x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 x64 -x65 -x66 -x67 x68 x69 x70 -x106 x107 -x108 -x109 -x110 -x111 -x112
x246 -x247 -x248 -x249 x250 x251 x252 x253 -x254 -x255 -x256 x257 x258 x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269
-x270 -x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292
-x293 -x294 x71 x72 -x73 -x74 x75 -x76 x77 -x113 x114 -x115 -x116 -x117 -x118 -x119 x295 x296 -x297 -x298 x299 -x300 x301 x302 x303 -x304
-x305 x306 -x307 x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327
-x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 x78 -x79 -x80 x81 x82 x83 x84 x120 -x121
-x122 -x123 -x124 -x125 -x126 x344 -x345 -x346 x347 x348 x349 x350 x351 -x352 -x353 x354 x355 x356 x357 -x358 -x359 -x360 -x361 -x362 -x363
-x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386
-x387 -x388 -x389 -x390 -x391 -x392 x85 x86 -x87 x88 -x89 x90 x91 -x127 x128 -x129 -x130 -x131 -x132 -x133 x393 x394 -x395 x396 -x397 x398
x399 x400 x401 -x402 x403 -x404 x405 x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422
-x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 x92 -x93 -x94 -x95 -x96
-x97 x98 -x134 x135 -x136 -x137 -x138 -x139 -x140 x442 -x443 -x444 -x445 -x446 -x447 x448 x449 -x450 -x451 -x452 -x453 -x454 x455 -x456
-x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479
-x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 x141 -x142 -x143 -x144 -x145 -x146 -x147