PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark44
Best CPU time to get the best result obtained on this benchmark36.61
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 44
Optimality of the best value was proved YES
Number of variables601
Total number of constraints1089
Number of constraints which are clauses1
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints1088
Minimum length of a constraint1
Maximum length of a constraint29
Number of terms in the objective function 7
Biggest coefficient in the objective function 36
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 99
Number of bits of the sum of numbers in the objective function 7
Biggest number in a constraint 128
Number of bits of the biggest number in a constraint 8
Biggest sum of numbers in a constraint 682
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688277OPT44 36.61 35.0247
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3735124OPT44 62 60.2623
PB07: PB-clasp 2007-04-10 (complete)3735122OPT44 82.5854 82.6927
clasp 2.0.6-R5325 (opt) (complete)3709157OPT44 92.4229 92.4375
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688276OPT44 100.149 53.484
PB11: Sat4j Res//CP 2.3.0 (complete)3735131OPT44 112.839 58.9537
pwbo 2.02 (complete)3725979OPT44 113.14 56.6773
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3735127OPT44 115.36 112.836
PB07: Pueblo 1.4 (incomplete)3720290OPT44 136.733 136.758
pwbo 2.0 (complete)3703678OPT44 142.669 71.3419
PB09: bsolo 3.1 (complete)3735125OPT44 165.987 166.028
wbo 1.7 (complete)3705199OPT44 174.36 174.407
wbo 1.72 (complete)3727500OPT44 179.29 179.319
PB07: bsolo 3.0.17 (complete)3735123OPT44 213.913 213.972
bsolo 3.2 (complete)3707991OPT44 242.678 242.739
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3735128OPT44 262.075 139.093
npSolver inc-topDown (fixed) (complete)3747266OPT44 377.018 377.048
toysat 2012-05-17 (complete)3706825OPT44 645.339 645.445
toysat 2012-06-01 (complete)3725198OPT44 662.431 662.539
npSolver inc (fixed) (complete)3748862OPT44 788.733 788.918
PB07: minisat+ 1.14 (complete)3721501OPT44 800.526 800.668
PB12: minisatp 1.0-2-g022594c (complete)3723602OPT44 884.463 884.63
npSolver 1.0 (fixed) (complete)3750458OPT44 966.098 966.282
pb2satCp2 2012-05-19 (complete)3694917OPT44 1042.47 1042.97
npSolver inc-topDown (complete)3698109OPT44 1257.78 1256.67
pb2sat 2012-05-19 (complete)3696513OPT44 1577.51 1577.98
npSolver 1.0 (complete)3701301OPT44 1633.59 1636.12
npSolver inc (complete)3699705OPT44 1726.11 1726.71
SAT4J PB specific settings 2.3.2 snapshot (complete)3710753SAT44 39.8979 37.4402
SCIP spx SCIP with SoPlex fixed (complete)3690989SAT50 1797.19 1797.56
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692155SAT50 1797.26 1797.58
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693321SAT51 1797.05 1797.38
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3735132SAT52 1796.95 1797.3
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3735126SAT (TO)56 1800.28 1800.6
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3735130SAT68 1789.86 1790.21
npSolver inc-topdown-quickBound (complete)3702897? (TO) 1800.09 1801.03
npSolver inc-topdown-quickBound (fixed) (complete)3752054? (TO) 1800.1 1800.62
PB10: pb_cplex 2010-06-29 (complete)3735129? (TO) 1800.23 632.916

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 44
Solution found:
-x1 -x2 -x3 x4 -x5 -x6 -x7 x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 x22 x23 -x24 -x25 -x26 -x27 x28 x29 -x30 x31
-x32 -x33 -x34 x35 -x36 -x37 x38 -x39 -x40 -x41 x42 -x43 -x44 -x45 x46 -x47 -x48 -x49 x50 -x51 -x52 x53 -x54 x55 x56 x57 x58 -x59 -x60 x61
x62 x63 x64 x65 x66 x67 x68 x69 x70 x71 x72 x73 x74 x75 x76 x77 x78 x79 x80 x81 x82 x83 x84 x85 x86 x87 x88 x89 x90 x91 x92 x93 x94 x95 x96
x97 x98 x99 x100 x101 x102 x103 x104 x105 x106 x107 x108 x109 x110 x111 x112 x113 x114 x115 x116 -x117 x118 x119 x120 x121 x122 x123 x124
x125 x126 x127 x128 x129 x130 -x131 x132 x133 x134 x135 x136 x137 x138 x139 x140 x141 x142 x143 -x144 x145 x146 x147 x148 x149 -x150 x151
x152 x153 x154 x155 x156 x157 x158 -x159 x160 x161 -x162 -x163 -x164 x165 x166 x167 x168 x169 -x170 x171 x172 x173 x174 -x175 x176 x177 x178
x179 -x180 -x181 x182 x183 x184 -x185 x186 x187 x188 -x189 -x190 -x191 -x192 -x193 -x194 x195 x196 x197 x198 x199 x200 x201 x202 x203 x204
x205 x206 -x207 x208 x209 x210 -x211 x212 x213 x214 -x215 -x216 -x217 -x218 -x219 -x220 x221 x222 x223 x224 x225 x226 -x227 x228 x229 -x230
-x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 x242 x243 x244 x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 -x256 x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 x265 x266 x267 x268 x269 x270 x271 x272 x273 x274 x275 x276 x277 -x278 x279 x280
x281 x282 x283 x284 x285 x286 x287 x288 x289 x290 x291 -x292 x293 x294 x295 x296 x297 x298 -x299 x300 x301 x302 x303 x304 -x305 x306 x307
x308 x309 x310 x311 x312 x313 -x314 x315 x316 -x317 -x318 -x319 -x320 x321 x322 x323 x324 -x325 x326 x327 x328 x329 -x330 -x331 x332 x333
x334 -x335 x336 x337 x338 -x339 -x340 -x341 -x342 -x343 -x344 x345 x346 x347 x348 x349 x350 x351 x352 -x353 x354 x355 x356 -x357 x358 x359
x360 -x361 -x362 -x363 -x364 -x365 -x366 x367 x368 x369 -x370 x371 x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383
-x384 x385 x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 x405 x406 x407
x408 x409 x410 -x411 x412 x413 x414 x415 x416 x417 x418 x419 x420 x421 x422 -x423 -x424 -x425 -x426 x427 x428 x429 x430 -x431 x432 x433 x434
x435 -x436 x437 x438 x439 -x440 -x441 -x442 -x443 -x444 -x445 x446 x447 x448 x449 -x450 x451 x452 x453 -x454 x455 x456 x457 -x458 -x459
-x460 -x461 -x462 -x463 x464 x465 x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483
-x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 x497 x498 x499 x500 x501 x502 x503 x504 -x505 x506 x507 -x508
-x509 -x510 x511 x512 x513 x514 x515 x516 x517 x518 -x519 x520 x521 -x522 -x523 -x524 -x525 x526 x527 -x528 x529 x530 -x531 -x532 -x533
-x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 x551 x552 x553 x554 x555 x556 x557
x558 x559 -x560 x561 x562 x563 -x564 -x565 -x566 -x567 -x568 -x569 x570 x571 -x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581
-x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 x601