PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark
normalized-PB06/OPT-SMALLINT/submitted-PB06/
manquiho/logic_synthesis/normalized-m4.r.opb

Jump to solvers results

General information on the benchmark

Namenormalized-PB06/OPT-SMALLINT/submitted-PB06/
manquiho/logic_synthesis/normalized-m4.r.opb
MD5SUMf69ecb5497caa964fbd82b9dc6698ac3
Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark90
Best CPU time to get the best result obtained on this benchmark0.142977
Has Objective FunctionYES
SatisfiableYES
(Un)Satisfiability was provedYES
Best value of the objective function 90
Optimality of the best value was proved YES
Number of variables652
Total number of constraints759
Number of constraints which are clauses759
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint46
Number of terms in the objective function 652
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 652
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 652
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB07: bsolo 3.0.17 (complete)3734540OPT90 0.105982 0.10931
PB10: pb_cplex 2010-06-29 (complete)3734546OPT90 0.142977 0.145317
PB09: bsolo 3.1 (complete)3734542OPT90 0.32495 0.325381
bsolo 3.2 (complete)3708035OPT90 0.328949 0.330636
PB09: SCIPspx SCIP 1.1.0.7 with SoPLEX 1.4.1(24.4.2009) (complete)3734543OPT90 0.459929 0.461359
SCIP spx E SCIP 2.1.1.4. Exp with SoPlex 1.6.0.3 fixed (complete)3692199OPT90 0.553914 0.555758
SCIP spx SCIP 2.1.1.4. with SoPlex 1.6.0.3 fixed (complete)3691033OPT90 0.585909 0.586975
SCIP spx standard SCIP 2.1.1.4. with SoPlex 1.6.0.3 standard fixed (complete)3693365OPT90 0.593909 0.595223
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3734549OPT90 1.04384 1.04447
PB10: SCIPspx SCIP 1.2.1.3 with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3734547OPT90 7.14691 7.15084
pwbo 2.0 (complete)3703722SAT (TO)98 1800.05 900.335
pwbo 2.02 (complete)3726023SAT (TO)98 1800.49 900.332
PB07: minisat+ 1.14 (complete)3721448SAT (TO)101 1800.07 1800.41
PB12: minisatp 1.0-2-g022594c (complete)3723646SAT (TO)102 1800.09 1800.41
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688170SAT (TO)103 1800.05 1047.26
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3734545SAT (TO)104 1800.07 1111.65
PB11: Sat4j Res//CP 2.3.0 (complete)3734548SAT (TO)104 1800.68 1114.78
clasp 2.0.6-R5325 (opt) (complete)3709201SAT (TO)111 1800.11 1800.41
PB07: Pueblo 1.4 (incomplete)3720237SAT113 1783 1783.28
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3734544SAT (TO)115 1800.3 1797.02
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3734541SAT (TO)115 1800.56 1795.52
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688171SAT (TO)115 1800.73 1794.35
SAT4J PB specific settings 2.3.2 snapshot (complete)3710797SAT (TO)116 1800.02 1790.06
PB07: PB-clasp 2007-04-10 (complete)3734539SAT (TO)117 1802.11 1802.42
wbo 1.7 (complete)3705243? 1799.44 1800.02
wbo 1.72 (complete)3727544? 1799.45 1800.04
npSolver inc-topdown-quickBound (complete)3702941? (TO) 1800.03 1800.62
toysat 2012-05-17 (complete)3706869? (TO) 1800.04 1800.41
npSolver inc-topdown-quickBound (fixed) (complete)3752098? (TO) 1800.04 1800.41
pb2satCp2 2012-05-19 (complete)3694961? (TO) 1800.06 1800.51
npSolver inc-topDown (fixed) (complete)3747310? (TO) 1800.07 1800.41
toysat 2012-06-01 (complete)3725242? (TO) 1800.07 1800.41
pb2sat 2012-05-19 (complete)3696557? (TO) 1800.08 1800.41
npSolver inc-topDown (complete)3698153? (TO) 1800.09 1800.41
npSolver inc (complete)3699749? (TO) 1800.11 1800.41
npSolver 1.0 (complete)3701345? (TO) 1800.12 1800.41
npSolver inc (fixed) (complete)3748906? (TO) 1800.12 1800.41
npSolver 1.0 (fixed) (complete)3750502? (TO) 1800.12 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 90
Solution found:
-x1 x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 x94 x95 x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112
-x113 -x114 -x115 -x116 -x117 -x118 x119 x120 x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136
-x137 -x138 -x139 -x140 -x141 -x142 x143 -x144 -x145 -x146 -x147 -x148 -x149 x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 x159 -x160
x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181 x182 x183 -x184
-x185 -x186 -x187 x188 -x189 -x190 -x191 -x192 -x193 -x194 x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207 x208
-x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 x229 -x230 -x231
-x232 -x233 -x234 -x235 x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 x244 -x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254 x255
-x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278
-x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301
-x302 -x303 -x304 -x305 x306 -x307 x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 x325
-x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 x348 x349
-x350 -x351 -x352 -x353 -x354 -x355 x356 -x357 -x358 x359 x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373
x374 -x375 -x376 x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 x397
x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 x415 -x416 -x417 -x418 -x419 -x420
-x421 -x422 -x423 x424 -x425 -x426 x427 x428 -x429 x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444
-x445 -x446 -x447 -x448 -x449 -x450 -x451 x452 x453 -x454 -x455 -x456 -x457 -x458 x459 -x460 -x461 -x462 -x463 -x464 x465 x466 -x467 -x468
x469 -x470 x471 -x472 x473 -x474 -x475 -x476 x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 x490 x491 -x492
-x493 x494 -x495 -x496 x497 x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 x515 -x516
-x517 x518 -x519 -x520 -x521 -x522 -x523 -x524 x525 -x526 -x527 x528 x529 -x530 -x531 -x532 -x533 x534 -x535 -x536 -x537 x538 x539 x540
-x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 x549 -x550 -x551 -x552 x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563
-x564 x565 -x566 -x567 -x568 -x569 -x570 -x571 x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586
-x587 -x588 x589 -x590 -x591 -x592 -x593 -x594 x595 -x596 -x597 -x598 -x599 -x600 -x601 x602 -x603 -x604 x605 -x606 -x607 -x608 x609 -x610
-x611 -x612 -x613 x614 x615 -x616 x617 -x618 -x619 -x620 -x621 x622 -x623 -x624 x625 -x626 -x627 x628 -x629 x630 x631 -x632 -x633 -x634
-x635 -x636 -x637 x638 x639 -x640 x641 -x642 x643 -x644 x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652