Name | normalized-PB06/OPT-SMALLINT/submitted-PB06/ manquiho/logic_synthesis/normalized-m4.r.opb |
MD5SUM | f69ecb5497caa964fbd82b9dc6698ac3 |
Bench Category | OPT-SMALLINT (optimisation, small integers) |
Best result obtained on this benchmark | OPT |
Best value of the objective obtained on this benchmark | 90 |
Best CPU time to get the best result obtained on this benchmark | 0.142977 |
Has Objective Function | YES |
Satisfiable | YES |
(Un)Satisfiability was proved | YES |
Best value of the objective function | 90 |
Optimality of the best value was proved | YES |
Number of variables | 652 |
Total number of constraints | 759 |
Number of constraints which are clauses | 759 |
Number of constraints which are cardinality constraints (but not clauses) | 0 |
Number of constraints which are nor clauses,nor cardinality constraints | 0 |
Minimum length of a constraint | 2 |
Maximum length of a constraint | 46 |
Number of terms in the objective function | 652 |
Biggest coefficient in the objective function | 1 |
Number of bits for the biggest coefficient in the objective function | 1 |
Sum of the numbers in the objective function | 652 |
Number of bits of the sum of numbers in the objective function | 10 |
Biggest number in a constraint | 1 |
Number of bits of the biggest number in a constraint | 1 |
Biggest sum of numbers in a constraint | 652 |
Number of bits of the biggest sum of numbers | 10 |
Number of products (including duplicates) | 0 |
Sum of products size (including duplicates) | 0 |
Number of different products | 0 |
Sum of products size | 0 |
This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).
objective function: 90-x1 x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30 -x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 x81 -x82 -x83 -x84 -x85 -x86 -x87 -x88 -x89 -x90 -x91 -x92 -x93 x94 x95 x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112 -x113 -x114 -x115 -x116 -x117 -x118 x119 x120 x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 x143 -x144 -x145 -x146 -x147 -x148 -x149 x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 x159 -x160 x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181 x182 x183 -x184 -x185 -x186 -x187 x188 -x189 -x190 -x191 -x192 -x193 -x194 x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207 x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 x229 -x230 -x231 -x232 -x233 -x234 -x235 x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 x244 -x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254 x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 x306 -x307 x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 x348 x349 -x350 -x351 -x352 -x353 -x354 -x355 x356 -x357 -x358 x359 x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 x374 -x375 -x376 x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 x397 x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 x424 -x425 -x426 x427 x428 -x429 x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 x452 x453 -x454 -x455 -x456 -x457 -x458 x459 -x460 -x461 -x462 -x463 -x464 x465 x466 -x467 -x468 x469 -x470 x471 -x472 x473 -x474 -x475 -x476 x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 x490 x491 -x492 -x493 x494 -x495 -x496 x497 x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 x515 -x516 -x517 x518 -x519 -x520 -x521 -x522 -x523 -x524 x525 -x526 -x527 x528 x529 -x530 -x531 -x532 -x533 x534 -x535 -x536 -x537 x538 x539 x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 x549 -x550 -x551 -x552 x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 x565 -x566 -x567 -x568 -x569 -x570 -x571 x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 x589 -x590 -x591 -x592 -x593 -x594 x595 -x596 -x597 -x598 -x599 -x600 -x601 x602 -x603 -x604 x605 -x606 -x607 -x608 x609 -x610 -x611 -x612 -x613 x614 x615 -x616 x617 -x618 -x619 -x620 -x621 x622 -x623 -x624 x625 -x626 -x627 x628 -x629 x630 x631 -x632 -x633 -x634 -x635 -x636 -x637 x638 x639 -x640 x641 -x642 x643 -x644 x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652