PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-LIN (optimisation, small integers, linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark12
Best CPU time to get the best result obtained on this benchmark0.076987
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 12
Optimality of the best value was proved YES
Number of variables741
Total number of constraints2072
Number of constraints which are clauses2072
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint31
Number of terms in the objective function 360
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 360
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 2
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 360
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3735914OPT12 0.076987 0.0765379
pwbo 2.02 (complete)3726098OPT12 0.106982 0.055778
PB07: bsolo 3.0.17 (complete)3735908OPT12 0.115981 0.118413
pwbo 2.0 (complete)3703797OPT12 0.12798 0.060021
wbo 1.7 (complete)3705318OPT12 0.156975 0.151094
wbo 1.72 (complete)3727619OPT12 0.156975 0.151211
PB12: minisatp 1.0-2-g022594c (complete)3723721OPT12 0.307953 0.31012
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3735915OPT12 0.340947 0.342591
npSolver 1.0 (fixed) (complete)3750577OPT12 0.376942 0.379267
PB09: bsolo 3.1 (complete)3735910OPT12 0.381941 0.381553
bsolo 3.2 (complete)3708110OPT12 0.382941 0.384795
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693440OPT12 0.51892 0.519678
SCIP spx SCIP with SoPlex fixed (complete)3691108OPT12 0.572912 0.574415
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692274OPT12 0.573912 0.575975
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3735917OPT12 0.693893 0.694726
PB07: minisat+ 1.14 (complete)3721586OPT12 0.698893 0.702297
pb2sat 2012-05-19 (complete)3696632OPT12 0.904861 0.910969
pb2satCp2 2012-05-19 (complete)3695036OPT12 1.09583 1.10008
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3735911OPT12 1.49177 1.49283
npSolver 1.0 (complete)3701420OPT12 1.9807 1.98634
PB07: Pueblo 1.4 (incomplete)3720345OPT12 11.4813 11.4848
PB11: Sat4j Res//CP 2.3.0 (complete)3735916OPT12 88.8725 48.8161
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3735913SAT (TO)12 1800.06 1064.93
clasp 2.0.6-R5325 (opt) (complete)3709276SAT (TO)12 1800.1 1800.41
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688446SAT (TO)12 1800.49 951.541
SAT4J PB specific settings 2.3.2 snapshot (complete)3710872SAT (TO)13 1800.5 1794.16
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688447SAT (TO)14 1800.71 1794.66
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3735909SAT (TO)15 1800.04 1793.03
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3735912SAT (TO)15 1800.45 1796.35
PB07: PB-clasp 2007-04-10 (complete)3735907SAT (TO)18 1802.1 1802.42
npSolver inc-topDown (complete)3698228? (problem) 0.030994 0.117391
npSolver inc-topdown-quickBound (complete)3703016? (problem) 0.032994 0.143853
npSolver inc (complete)3699824? (problem) 0.032994 0.135228
npSolver inc-topDown (fixed) (complete)3747385? (problem) 0.033994 0.129867
npSolver inc (fixed) (complete)3748981? (problem) 0.038993 0.120988
npSolver inc-topdown-quickBound (fixed) (complete)3752173? (problem) 0.039993 0.142001
toysat 2012-06-01 (complete)3725317? (TO) 1800.01 1800.31
toysat 2012-05-17 (complete)3706944? (TO) 1800.02 1800.31

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 12
Solution found:
-x83 x85 -x87 -x89 -x91 -x93 -x95 -x97 -x99 -x101 -x103 -x105 -x107 -x109 -x111 -x113 -x115 -x117 -x119 -x121 -x123 -x124 -x126 -x128 -x130
-x131 -x133 -x135 -x137 x138 -x140 -x142 -x144 -x146 -x148 -x150 -x152 x153 -x155 -x157 -x159 -x161 -x162 -x164 -x166 -x168 -x170 -x172
-x174 -x176 x178 -x180 -x182 -x183 -x185 -x187 -x189 -x191 -x193 -x195 x197 -x199 -x201 -x203 -x205 -x207 -x209 -x211 -x213 -x214 -x216
-x218 -x219 -x221 -x223 -x224 -x226 -x228 -x230 x232 -x234 -x236 -x238 -x240 -x242 -x244 -x246 -x247 -x249 -x251 -x253 x254 -x255 -x256
-x258 -x260 -x262 -x264 -x265 -x267 -x269 -x271 -x273 -x275 -x277 -x279 -x281 -x283 x284 -x285 -x287 -x289 -x291 -x293 -x294 -x296 -x298
-x300 -x302 -x304 -x306 -x308 -x309 -x311 -x313 -x315 -x316 -x318 -x320 -x322 -x323 -x325 -x327 -x329 -x331 -x333 -x335 x337 -x339 -x340
-x342 -x344 -x345 -x347 -x349 -x351 -x353 -x355 -x357 -x359 -x361 -x362 -x364 -x365 -x367 -x368 -x370 -x372 -x374 -x376 -x378 -x380 -x382
-x384 -x386 -x387 -x389 -x391 x393 -x395 -x397 -x399 -x401 -x403 -x405 -x407 -x409 -x411 -x413 -x415 -x417 -x419 -x421 -x423 -x425 -x427
-x429 -x431 -x433 -x435 -x437 -x439 -x441 -x443 -x445 -x447 -x449 -x451 -x453 -x455 -x457 -x459 -x461 -x462 -x464 -x466 -x468 -x470 -x472
-x474 -x476 -x478 -x479 -x481 -x483 -x485 -x487 -x489 -x491 -x493 -x495 -x497 -x498 -x500 -x502 -x504 -x505 -x507 -x509 -x511 -x513 -x515
-x517 -x518 -x520 -x522 -x524 -x525 -x527 -x529 -x531 -x533 -x535 -x537 -x539 -x541 -x543 -x545 -x547 -x549 -x551 -x553 -x555 -x557 -x559
-x560 -x562 -x564 -x566 -x568 -x570 -x571 -x573 -x575 -x577 -x579 -x581 -x582 -x583 -x585 -x587 -x589 -x591 -x593 -x595 -x596 -x598 -x600
-x602 -x604 -x606 -x608 -x609 -x610 -x612 -x614 -x616 -x618 -x619 -x620 x621 -x623 -x625 -x627 -x629 -x631 -x633 -x635 -x637 -x638 -x640
-x641 -x643 -x645 -x646 -x648 -x649 -x650 -x652 -x654 x656 -x658 -x660 -x661 -x662 -x664 -x665 -x667 -x669 -x670 -x672 -x674 -x675 -x677
-x679 -x681 -x682 -x683 -x685 -x686 -x688 -x690 -x692 -x694 -x696 -x698 -x700 -x702 -x704 -x705 -x706 -x708 -x710 -x712 -x714 -x715 -x717
-x719 -x721 -x723 -x725 -x727 -x729 -x731 -x733 -x735 -x737 -x738 -x740 -x741 -x82 x84 -x86 -x88 -x90 -x92 -x94 -x96 -x98 -x100 -x102 -x104
-x106 -x108 -x110 -x112 -x1 -x114 -x116 -x118 -x120 -x122 -x125 -x2 -x127 -x129 -x132 -x134 -x136 x3 -x139 -x141 -x4 -x143 -x145 -x147 -x149
-x5 -x151 -x6 x7 -x154 -x156 -x158 -x160 -x163 -x165 -x167 -x169 -x171 -x173 -x175 x177 -x179 -x181 -x8 -x184 -x186 -x188 -x190 -x192 -x194
x196 -x198 -x200 -x202 -x204 -x206 -x208 -x210 -x212 -x215 -x217 -x220 -x222 x9 -x225 -x227 -x229 x231 -x233 -x10 -x235 -x237 -x239 -x241
-x243 -x11 -x245 -x248 -x250 x12 -x252 -x13 -x14 -x257 -x15 -x259 -x261 -x16 -x263 -x17 x18 x19 -x266 -x268 -x270 -x272 -x274 -x276 -x278
-x280 -x282 -x286 -x288 -x290 -x292 -x295 -x297 -x299 -x301 -x303 -x305 -x307 -x310 -x312 -x314 -x317 -x319 -x321 x20 -x324 -x326 -x328
-x330 -x332 -x334 x336 -x338 -x341 -x343 -x21 -x346 -x348 -x350 -x352 -x354 -x356 -x358 -x360 -x363 -x22 -x366 -x369 -x371 -x373 -x375 -x377
-x379 -x381 -x383 -x385 -x388 -x390 x392 -x394 -x396 -x398 -x400 -x402 -x404 -x406 -x408 -x410 -x412 -x414 -x416 -x418 -x420 -x422 -x424
-x426 -x428 -x23 -x430 -x432 -x434 -x436 -x438 -x440 -x442 -x444 -x446 -x448 -x24 -x450 -x452 -x454 -x456 -x458 -x460 -x463 -x465 -x467
-x469 x25 -x471 -x473 -x475 -x26 -x477 -x480 -x482 -x484 -x486 -x488 -x490 -x492 -x494 -x496 -x499 -x501 -x503 -x506 -x508 -x510 -x27 -x512
-x28 -x514 -x516 -x29 -x519 x30 -x521 -x523 -x526 -x528 -x530 -x532 -x534 -x536 -x538 -x540 -x542 -x544 -x546 -x548 -x550 -x552 -x554 -x556
-x558 -x561 -x563 -x565 -x567 -x569 -x572 -x31 -x574 -x576 -x578 -x580 -x584 -x586 -x588 -x590 -x32 -x592 -x594 -x597 -x599 -x601 -x33 -x603
-x605 -x607 x34 -x611 -x613 -x615 -x617 x35 -x36 x37 -x622 -x38 -x624 -x626 -x628 -x630 -x632 -x39 -x634 -x636 -x639 -x642 -x40 -x41 -x42
-x43 -x644 -x647 -x651 -x653 x44 x655 -x657 x45 -x46 -x47 x48 x49 x50 -x659 -x51 -x663 x52 -x666 -x668 -x671 -x673 -x676 x53 -x54 -x55 -x678
-x680 -x684 -x687 -x689 -x691 -x693 -x695 -x697 -x699 -x701 -x703 -x707 -x709 -x711 -x713 -x56 -x716 -x718 -x720 -x722 -x57 -x724 -x58 -x59
-x726 x60 -x61 -x62 -x728 -x730 -x732 -x734 -x63 -x64 x65 x66 x67 -x68 -x736 -x69 x70 -x71 -x739 -x72 x73 -x74 -x75 -x76 x77 x78 x79 x80 x81