PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark-30
Best CPU time to get the best result obtained on this benchmark19.787
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -30
Optimality of the best value was proved YES
Number of variables450
Total number of constraints17827
Number of constraints which are clauses17827
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint2
Number of terms in the objective function 450
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 450
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 450
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
npSolver inc (fixed) (complete)3748800OPT-30 19.787 19.9644
pb2sat 2012-05-19 (complete)3696451OPT-30 19.795 19.8064
npSolver inc (complete)3699643OPT-30 19.944 20.185
npSolver 1.0 (complete)3701239OPT-30 20.0629 20.0713
npSolver 1.0 (fixed) (complete)3750396OPT-30 20.0769 20.1954
npSolver inc-topdown-quickBound (fixed) (complete)3751992OPT-30 20.2059 20.3258
pb2satCp2 2012-05-19 (complete)3694855OPT-30 20.2389 20.2514
npSolver inc-topdown-quickBound (complete)3702835OPT-30 20.2889 20.4815
npSolver inc-topDown (complete)3698047OPT-30 20.2929 20.2893
npSolver inc-topDown (fixed) (complete)3747204OPT-30 20.5099 20.5303
PB07: minisat+ 1.14 (complete)3721294OPT-30 91.3001 91.3186
PB12: minisatp 1.0-2-g022594c (complete)3723540OPT-30 109.659 54.9053
pwbo 2.0 (complete)3703616OPT-30 372.17 186.271
pwbo 2.02 (complete)3725917OPT-30 381.379 190.722
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3733020OPT-30 1459.94 1460.19
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3733018SAT-28 1789.85 1790.15
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3733014SAT-28 1794.17 1794.45
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693259SAT-28 1796.86 1797.17
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692093SAT-28 1796.86 1797.16
SCIP spx SCIP with SoPlex fixed (complete)3690927SAT-28 1796.9 1797.2
clasp 2.0.6-R5325 (opt) (complete)3709095SAT (TO)-27 1800.07 1800.41
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3733016SAT (TO)-26 1800.01 935.947
SAT4J PB specific settings 2.3.2 snapshot (complete)3710691SAT (TO)-26 1800.04 1789.35
PB11: Sat4j Res//CP 2.3.0 (complete)3733019SAT (TO)-26 1800.58 963.107
PB09: bsolo 3.1 (complete)3733013SAT-25 1798 1798.42
bsolo 3.2 (complete)3707929SAT-25 1798.01 1798.37
PB07: bsolo 3.0.17 (complete)3733011SAT (TO)-25 1800.03 1800.41
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3733015SAT (TO)-25 1800.91 1797.12
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687862SAT (TO)-24 1800.5 926.27
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687863SAT (TO)-21 1800.67 1793.55
PB07: Pueblo 1.4 (incomplete)3720124SAT-16 1783.01 1783.31
wbo 1.7 (complete)3705137? 1799.61 1800.01
wbo 1.72 (complete)3727438? 1799.81 1800
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3733012? (exit code) 1184.69 1181.71
PB10: pb_cplex 2010-06-29 (complete)3733017? (TO) 1800.08 536.716
toysat 2012-05-17 (complete)3706763? (TO) 1800.1 1800.53
toysat 2012-06-01 (complete)3725136? (TO) 1800.11 1800.62
PB07: PB-clasp 2007-04-10 (complete)3733010? (TO) 1800.28 1000.32

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -30
Solution found:
-x1 -x2 -x3 -x4 x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 x74 -x75 -x76 -x77 x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 -x113 x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134
-x135 -x136 -x137 -x138 -x139 -x140 -x141 x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157
-x158 x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180
-x181 -x182 -x183 -x184 -x185 x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203
-x204 -x205 x206 -x207 -x208 -x209 -x210 x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 x227
-x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250
-x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 x268 -x269 -x270 -x271 -x272 -x273
-x274 -x275 -x276 -x277 -x278 -x279 x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 x294 -x295 -x296
-x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 x314 -x315 -x316 -x317 -x318 -x319
-x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 x329 -x330 -x331 -x332 -x333 -x334 -x335 x336 -x337 -x338 -x339 -x340 -x341 -x342
-x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 x364 -x365
-x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 x384 -x385 -x386 -x387 -x388
-x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 x411
-x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434
-x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 x447 -x448 -x449 -x450