PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark-30
Best CPU time to get the best result obtained on this benchmark12.2971
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -30
Optimality of the best value was proved YES
Number of variables450
Total number of constraints17794
Number of constraints which are clauses17794
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint2
Number of terms in the objective function 450
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 450
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 450
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
pb2sat 2012-05-19 (complete)3696454OPT-30 12.2971 12.3964
npSolver inc (fixed) (complete)3748803OPT-30 12.3821 12.3862
npSolver inc (complete)3699646OPT-30 12.3911 12.4027
npSolver 1.0 (complete)3701242OPT-30 12.4971 12.7379
npSolver 1.0 (fixed) (complete)3750399OPT-30 12.5611 12.7006
npSolver inc-topDown (fixed) (complete)3747207OPT-30 12.833 13.8901
pb2satCp2 2012-05-19 (complete)3694858OPT-30 12.861 12.8706
npSolver inc-topdown-quickBound (fixed) (complete)3751995OPT-30 12.896 12.9271
npSolver inc-topdown-quickBound (complete)3702838OPT-30 12.903 12.9103
npSolver inc-topDown (complete)3698050OPT-30 12.907 13.0499
PB12: minisatp 1.0-2-g022594c (complete)3723543OPT-30 18.8611 18.8652
PB07: minisat+ 1.14 (complete)3721293OPT-30 20.5159 20.52
pwbo 2.0 (complete)3703619OPT-30 136.33 68.2491
pwbo 2.02 (complete)3725920OPT-30 147.156 73.7106
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693262OPT-30 780.732 780.867
SCIP spx SCIP with SoPlex fixed (complete)3690930OPT-30 811.056 811.2
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692096OPT-30 829.03 829.304
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3733003OPT-30 947.236 947.393
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3733009OPT-30 1040.42 1040.64
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3733007OPT-30 1096.61 1096.82
clasp 2.0.6-R5325 (opt) (complete)3709098SAT (TO)-27 1800.08 1800.41
PB09: bsolo 3.1 (complete)3733002SAT-26 1798 1798.35
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3733001SAT (TO)-26 1800.04 1797.43
SAT4J PB specific settings 2.3.2 snapshot (complete)3710694SAT (TO)-26 1800.08 1792.15
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3733005SAT (TO)-26 1800.11 926.954
PB11: Sat4j Res//CP 2.3.0 (complete)3733008SAT (TO)-26 1801.31 951.011
bsolo 3.2 (complete)3707932SAT-25 1798 1798.35
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687860SAT (TO)-25 1800.14 929.942
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3733004SAT (TO)-25 1800.86 1797.87
PB07: bsolo 3.0.17 (complete)3733000SAT (TO)-24 1800.04 1800.41
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687861SAT (TO)-22 1801.1 1790.36
PB07: Pueblo 1.4 (incomplete)3720123SAT-16 1783 1783.31
wbo 1.7 (complete)3705140? 1799.49 1800
wbo 1.72 (complete)3727441? 1799.55 1800.01
toysat 2012-06-01 (complete)3725139? (TO) 1800.05 1800.52
toysat 2012-05-17 (complete)3706766? (TO) 1800.1 1800.52
PB10: pb_cplex 2010-06-29 (complete)3733006? (TO) 1800.26 547.617
PB07: PB-clasp 2007-04-10 (complete)3732999? (TO) 1800.31 1052.72

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -30
Solution found:
x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 x73 -x74 -x75 -x76 x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 -x113 -x114 -x115 x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 x133 -x134
-x135 -x136 -x137 -x138 -x139 x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 x156 -x157
-x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 x178 -x179 -x180
-x181 -x182 -x183 -x184 -x185 -x186 -x187 -x188 x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203
-x204 -x205 -x206 -x207 -x208 x209 -x210 -x211 -x212 x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226
-x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 x240 -x241 -x242 -x243 -x244 x245 -x246 -x247 -x248 -x249
-x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272
-x273 -x274 -x275 -x276 x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 x291 -x292 -x293 -x294 -x295
-x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 x313 -x314 -x315 -x316 -x317 -x318
x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 x339 -x340 -x341
-x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 x358 -x359 -x360 -x361 -x362 -x363 -x364
-x365 -x366 -x367 x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387
-x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 x404 -x405 -x406 -x407 -x408 -x409 x410
-x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433
-x434 -x435 -x436 -x437 -x438 -x439 x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450