PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark24
Best CPU time to get the best result obtained on this benchmark0.159975
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 24
Optimality of the best value was proved YES
Number of variables466
Total number of constraints694
Number of constraints which are clauses694
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint78
Number of terms in the objective function 466
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 466
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 466
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB07: bsolo 3.0.17 (complete)3732340OPT24 0.086986 0.0882809
PB10: pb_cplex 2010-06-29 (complete)3732346OPT24 0.159975 0.160972
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693133OPT24 0.424934 0.426681
PB09: bsolo 3.1 (complete)3732342OPT24 0.505922 0.506268
bsolo 3.2 (complete)3707803OPT24 0.527919 0.528552
SCIP spx SCIP with SoPlex fixed (complete)3690801OPT24 0.527919 0.529316
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732343OPT24 0.534918 0.536322
SCIP spx E SCIP Exp with SoPlex fixed (complete)3691967OPT24 0.543916 0.544924
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732347OPT24 0.565913 0.567147
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732349OPT24 0.605907 0.608124
wbo 1.72 (complete)3727312OPT24 5.66414 5.6822
wbo 1.7 (complete)3705011OPT24 6.18206 6.19916
pwbo 2.0 (complete)3703490OPT24 8.83166 4.41793
pwbo 2.02 (complete)3725791OPT24 9.1926 4.60455
PB07: Pueblo 1.4 (incomplete)3720063OPT24 43.3244 43.3357
npSolver inc (fixed) (complete)3748674OPT24 45.848 45.8736
npSolver inc-topdown-quickBound (fixed) (complete)3751866OPT24 46.4499 46.4575
npSolver 1.0 (fixed) (complete)3750270OPT24 46.5389 46.5499
npSolver inc-topDown (fixed) (complete)3747078OPT24 46.8379 46.8486
npSolver inc-topdown-quickBound (complete)3702709OPT24 51.9601 51.9732
npSolver inc-topDown (complete)3697921OPT24 53.1669 53.1729
npSolver inc (complete)3699517OPT24 60.2698 60.2882
npSolver 1.0 (complete)3701113OPT24 60.6328 60.6514
pb2satCp2 2012-05-19 (complete)3694729OPT24 63.5883 63.614
pb2sat 2012-05-19 (complete)3696325OPT24 71.0972 71.1407
PB12: minisatp 1.0-2-g022594c (complete)3723414OPT24 275.05 275.106
PB07: minisat+ 1.14 (complete)3721233OPT24 436.246 436.323
PB11: Sat4j Res//CP 2.3.0 (complete)3732348SAT (TO)24 1800.46 1034.54
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687740SAT (TO)24 1800.52 961.54
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732345SAT (TO)25 1800.84 1078.54
PB07: PB-clasp 2007-04-10 (complete)3732339SAT (TO)26 1802.07 1802.42
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687741SAT (TO)27 1800.1 1788.36
clasp 2.0.6-R5325 (opt) (complete)3708969SAT (TO)28 1800.02 1800.31
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732341SAT (TO)29 1800.06 1793.32
SAT4J PB specific settings 2.3.2 snapshot (complete)3710565SAT (TO)29 1800.66 1791.56
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732344SAT (TO)29 1801.36 1796.83
toysat 2012-06-01 (complete)3725010? (TO) 1800.07 1800.41
toysat 2012-05-17 (complete)3706637? (TO) 1800.08 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 24
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 -x113 x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134
-x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 x147 -x148 -x149 -x150 -x151 x152 -x153 -x154 -x155 -x156 -x157
-x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 x180
-x181 -x182 -x183 -x184 -x185 x186 x187 -x188 -x189 x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204
-x205 -x206 -x207 -x208 -x209 -x210 -x211 x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227
-x228 -x229 -x230 x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250
-x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273
-x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296
-x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319
-x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 x328 -x329 -x330 -x331 -x332 -x333 x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342
-x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365
-x366 -x367 -x368 -x369 -x370 -x371 -x372 x373 -x374 x375 -x376 -x377 x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389
x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412
-x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 -x435
-x436 -x437 -x438 -x439 x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 x453 -x454 -x455 -x456 -x457 -x458
-x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466