PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark192
Best CPU time to get the best result obtained on this benchmark1789.74
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 185
Optimality of the best value was proved NO
Number of variables473
Total number of constraints473
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints473
Minimum length of a constraint4
Maximum length of a constraint18
Number of terms in the objective function 473
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 473
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 30
Number of bits of the biggest number in a constraint 5
Biggest sum of numbers in a constraint 473
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3731412SAT192 1789.74 1790.03
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3731408SAT193 1797.94 1798.22
SCIP spx SCIP with SoPlex fixed (complete)3690887SAT194 1796.77 1797.05
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692053SAT194 1796.77 1797.06
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3731414SAT195 1796.74 1797.04
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693219SAT196 1796.77 1797.06
clasp 2.0.6-R5325 (opt) (complete)3709055SAT (TO)207 1800.03 1800.31
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3731410SAT (TO)212 1800.11 1025.44
PB11: Sat4j Res//CP 2.3.0 (complete)3731413SAT (TO)212 1800.13 1064.93
PB07: Pueblo 1.4 (incomplete)3719978SAT213 1783.01 1783.28
SAT4J PB specific settings 2.3.2 snapshot (complete)3710651SAT (TO)214 1800.06 1791.15
bsolo 3.2 (complete)3707889SAT216 1798.01 1798.36
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3731409SAT (TO)216 1800.01 1769.26
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3731406SAT (TO)216 1800.02 1759.53
PB07: PB-clasp 2007-04-10 (complete)3731404SAT (TO)216 1802.09 1802.42
PB09: bsolo 3.1 (complete)3731407SAT217 1798 1798.33
pwbo 2.02 (complete)3725877SAT (TO)217 1800.09 900.321
pwbo 2.0 (complete)3703576SAT (TO)217 1800.5 900.327
PB12: minisatp 1.0-2-g022594c (complete)3723500SAT (TO)218 1800.02 1800.41
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687570SAT (TO)218 1801.67 973
PB07: minisat+ 1.14 (complete)3721148SAT (TO)221 1800.04 1800.41
PB07: bsolo 3.0.17 (complete)3731405SAT (TO)225 1800.06 1800.41
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687571SAT (TO)231 1800.02 1791.16
wbo 1.7 (complete)3705097? 1799.45 1800.02
wbo 1.72 (complete)3727398? 1799.89 1800.02
toysat 2012-06-01 (complete)3725096? (TO) 1800.01 1800.31
PB10: pb_cplex 2010-06-29 (complete)3731411? (TO) 1800.03 512.716
npSolver inc-topdown-quickBound (complete)3702795? (TO) 1800.04 1800.51
pb2satCp2 2012-05-19 (complete)3694815? (TO) 1800.05 1800.51
npSolver inc-topDown (complete)3698007? (TO) 1800.07 1800.71
pb2sat 2012-05-19 (complete)3696411? (TO) 1800.08 1800.51
npSolver inc (fixed) (complete)3748760? (TO) 1800.1 1800.41
npSolver inc-topDown (fixed) (complete)3747164? (TO) 1800.1 1800.51
toysat 2012-05-17 (complete)3706723? (TO) 1800.11 1800.41
npSolver inc-topdown-quickBound (fixed) (complete)3751952? (TO) 1800.11 1800.51
npSolver inc (complete)3699603? (TO) 1800.12 1800.41
npSolver 1.0 (fixed) (complete)3750356? (TO) 1800.13 1800.41
npSolver 1.0 (complete)3701199? (TO) 1800.13 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 192
Solution found:
-x473 x472 -x471 x470 -x469 -x468 x467 x466 -x465 x464 -x463 x462 x461 -x460 -x459 -x458 -x457 -x456 -x455 x454 -x453 -x452 x451 -x450 -x449
x448 x447 x446 x445 -x444 x443 -x442 x441 x440 -x439 -x438 x437 -x436 -x435 x434 -x433 -x432 -x431 -x430 x429 x428 -x427 -x426 -x425 x424
-x423 x422 x421 x420 -x419 -x418 x417 x416 x415 -x414 x413 -x412 -x411 x410 -x409 -x408 x407 -x406 x405 -x404 -x403 -x402 -x401 -x400 x399
-x398 -x397 x396 x395 -x394 -x393 x392 -x391 x390 x389 x388 x387 -x386 -x385 x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 x376 x375 -x374
x373 -x372 x371 x370 -x369 -x368 x367 -x366 x365 -x364 x363 x362 x361 -x360 -x359 x358 -x357 x356 -x355 -x354 x353 -x352 x351 x350 -x349
-x348 x347 x346 -x345 -x344 -x343 x342 -x341 -x340 x339 -x338 -x337 x336 -x335 x334 x333 -x332 x331 -x330 -x329 x328 x327 -x326 -x325 x324
x323 -x322 -x321 x320 x319 -x318 x317 x316 -x315 -x314 -x313 x312 -x311 -x310 x309 x308 -x307 x306 -x305 -x304 x303 -x302 x301 x300 -x299
-x298 x297 x296 -x295 -x294 -x293 -x292 -x291 x290 -x289 -x288 -x287 x286 -x285 x284 x283 -x282 -x281 -x280 -x279 x278 -x277 x276 -x275
-x274 -x273 -x272 x271 -x270 -x269 -x268 -x267 x266 x265 -x264 -x263 x262 x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 x252 -x251
-x250 -x249 x248 -x247 x246 x245 -x244 -x243 -x242 -x241 -x240 -x239 x238 x237 x236 -x235 x234 x233 -x232 -x231 -x230 -x229 x228 -x227 x226
-x225 x224 -x223 -x222 x221 -x220 -x219 x218 -x217 -x216 -x215 -x214 x213 x212 -x211 x210 -x209 x208 -x207 x206 -x205 x204 -x203 -x202 -x201
-x200 -x199 x198 -x197 -x196 -x195 -x194 -x193 x192 x191 -x190 x189 -x188 -x187 -x186 x185 -x184 x183 -x182 x181 -x180 x179 -x178 -x177 x176
x175 x174 x173 x172 -x171 -x170 -x169 -x168 -x167 -x166 x165 -x164 -x163 -x162 -x161 x160 x159 x158 -x157 x156 -x155 -x154 -x153 x152 -x151
x150 x149 -x148 -x147 x146 x145 -x144 -x143 x142 x141 -x140 -x139 x138 x137 -x136 x135 -x134 -x133 -x132 x131 -x130 x129 -x128 -x127 x126
-x125 x124 x123 -x122 x121 -x120 x119 -x118 x117 -x116 x115 -x114 -x113 -x112 x111 x110 -x109 -x108 -x107 -x106 -x105 -x104 x103 x102 x101
x100 -x99 -x98 -x97 -x96 -x95 x94 x93 -x92 -x91 -x90 -x89 -x88 x87 -x86 x85 -x84 -x83 x82 -x81 -x80 x79 x78 x77 -x76 -x75 -x74 -x73 -x72
-x71 x70 -x69 x68 x67 x66 -x65 -x64 x63 x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 x54 x53 -x52 -x51 x50 x49 -x48 x47 -x46 x45 -x44 -x43 x42 x41
-x40 -x39 x38 -x37 -x36 x35 -x34 -x33 x32 -x31 x30 x29 -x28 -x27 x26 x25 -x24 -x23 x22 -x21 x20 x19 x18 -x17 -x16 x15 -x14 -x13 -x12 -x11
-x10 -x9 x8 x7 -x6 x5 -x4 x3 -x2 -x1