PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark193
Best CPU time to get the best result obtained on this benchmark1796.77
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 189
Optimality of the best value was proved NO
Number of variables481
Total number of constraints481
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints481
Minimum length of a constraint3
Maximum length of a constraint19
Number of terms in the objective function 481
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 481
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 30
Number of bits of the biggest number in a constraint 5
Biggest sum of numbers in a constraint 481
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693221SAT193 1796.77 1797.04
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3731386SAT (TO)195 1800.06 1800.35
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3731392SAT197 1796.78 1797.07
SCIP spx SCIP with SoPlex fixed (complete)3690889SAT198 1796.76 1797.04
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692055SAT198 1796.76 1797.05
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3731390SAT199 1789.75 1790.03
clasp 2.0.6-R5325 (opt) (complete)3709057SAT (TO)211 1800.03 1800.31
PB07: PB-clasp 2007-04-10 (complete)3731382SAT (TO)215 1802.12 1802.42
PB11: Sat4j Res//CP 2.3.0 (complete)3731391SAT (TO)217 1800.28 1058.32
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3731388SAT (TO)217 1801.14 1022.33
SAT4J PB specific settings 2.3.2 snapshot (complete)3710653SAT (TO)218 1800.63 1790.35
PB07: Pueblo 1.4 (incomplete)3719976SAT219 1783.01 1783.28
bsolo 3.2 (complete)3707891SAT219 1798.01 1798.34
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3731387SAT (TO)220 1800.01 1767.18
PB12: minisatp 1.0-2-g022594c (complete)3723502SAT (TO)220 1800.08 1800.41
pwbo 2.0 (complete)3703578SAT (TO)220 1800.56 900.352
pwbo 2.02 (complete)3725879SAT (TO)220 1800.63 900.353
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3731384SAT (TO)221 1800.52 1767.52
PB09: bsolo 3.1 (complete)3731385SAT222 1798.05 1798.43
PB07: minisat+ 1.14 (complete)3721146SAT (TO)222 1800.06 1800.41
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687566SAT (TO)227 1800.52 981.552
PB07: bsolo 3.0.17 (complete)3731383SAT (TO)230 1800.07 1800.41
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687567SAT (TO)236 1800.07 1794.25
wbo 1.72 (complete)3727400? 1799.37 1800.01
wbo 1.7 (complete)3705099? 1799.71 1800.01
toysat 2012-05-17 (complete)3706725? (TO) 1800.01 1800.31
toysat 2012-06-01 (complete)3725098? (TO) 1800.02 1800.31
PB10: pb_cplex 2010-06-29 (complete)3731389? (TO) 1800.03 512.528
npSolver inc-topdown-quickBound (complete)3702797? (TO) 1800.05 1800.51
npSolver inc-topDown (fixed) (complete)3747166? (TO) 1800.05 1800.41
pb2sat 2012-05-19 (complete)3696413? (TO) 1800.07 1800.51
pb2satCp2 2012-05-19 (complete)3694817? (TO) 1800.08 1800.51
npSolver 1.0 (complete)3701201? (TO) 1800.1 1800.41
npSolver inc (complete)3699605? (TO) 1800.11 1800.41
npSolver inc-topdown-quickBound (fixed) (complete)3751954? (TO) 1800.11 1800.51
npSolver inc-topDown (complete)3698009? (TO) 1800.11 1801.31
npSolver inc (fixed) (complete)3748762? (TO) 1800.13 1800.41
npSolver 1.0 (fixed) (complete)3750358? (TO) 1800.13 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 193
Solution found:
-x481 -x480 x479 -x478 -x477 -x476 -x475 -x474 -x473 x472 -x471 -x470 -x469 x468 x467 x466 -x465 x464 x463 x462 -x461 -x460 x459 x458 x457
-x456 x455 -x454 x453 x452 -x451 -x450 -x449 -x448 x447 -x446 -x445 x444 -x443 x442 -x441 x440 -x439 x438 -x437 -x436 x435 -x434 -x433 -x432
-x431 -x430 -x429 -x428 -x427 x426 x425 -x424 x423 -x422 x421 -x420 x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 x410 x409 -x408
x407 x406 x405 -x404 x403 -x402 x401 x400 x399 x398 -x397 x396 -x395 -x394 x393 -x392 x391 x390 -x389 x388 -x387 -x386 -x385 -x384 -x383
-x382 x381 -x380 -x379 -x378 x377 x376 -x375 x374 -x373 -x372 x371 -x370 -x369 -x368 -x367 x366 x365 -x364 x363 x362 x361 -x360 x359 -x358
x357 x356 -x355 -x354 -x353 -x352 -x351 -x350 -x349 -x348 -x347 -x346 x345 x344 x343 -x342 -x341 x340 -x339 x338 -x337 x336 -x335 x334 x333
x332 -x331 -x330 -x329 x328 -x327 x326 -x325 x324 -x323 x322 -x321 -x320 x319 x318 x317 -x316 -x315 -x314 x313 x312 x311 -x310 -x309 -x308
-x307 -x306 -x305 -x304 -x303 x302 -x301 -x300 -x299 -x298 -x297 -x296 x295 x294 x293 x292 -x291 -x290 x289 -x288 x287 -x286 -x285 x284 x283
x282 x281 -x280 -x279 x278 -x277 -x276 -x275 -x274 -x273 x272 -x271 x270 -x269 -x268 -x267 -x266 -x265 x264 x263 -x262 x261 -x260 x259 x258
-x257 -x256 -x255 x254 -x253 x252 -x251 x250 x249 x248 -x247 x246 x245 -x244 x243 x242 -x241 -x240 x239 x238 -x237 x236 -x235 -x234 -x233
-x232 x231 x230 x229 -x228 x227 x226 -x225 -x224 -x223 x222 -x221 x220 x219 x218 -x217 -x216 -x215 -x214 -x213 -x212 x211 x210 x209 -x208
-x207 -x206 -x205 -x204 -x203 x202 -x201 x200 -x199 -x198 -x197 -x196 -x195 -x194 x193 x192 -x191 x190 x189 x188 -x187 -x186 x185 -x184 x183
x182 -x181 -x180 -x179 x178 -x177 x176 -x175 -x174 -x173 -x172 -x171 x170 -x169 -x168 x167 -x166 x165 x164 x163 x162 -x161 -x160 -x159 x158
-x157 -x156 -x155 x154 -x153 -x152 -x151 x150 x149 -x148 -x147 x146 x145 -x144 -x143 -x142 x141 -x140 -x139 -x138 -x137 x136 -x135 -x134
-x133 -x132 x131 x130 -x129 x128 -x127 -x126 -x125 -x124 x123 -x122 x121 x120 -x119 -x118 -x117 -x116 -x115 x114 x113 x112 x111 -x110 -x109
x108 x107 x106 x105 -x104 -x103 x102 x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 x93 -x92 -x91 x90 -x89 x88 -x87 -x86 x85 x84 x83 -x82 -x81
-x80 -x79 x78 x77 -x76 -x75 -x74 x73 -x72 -x71 -x70 -x69 -x68 x67 x66 -x65 -x64 x63 -x62 -x61 x60 -x59 x58 -x57 -x56 -x55 x54 -x53 x52 x51
x50 -x49 -x48 x47 x46 -x45 -x44 -x43 x42 -x41 x40 x39 -x38 -x37 x36 -x35 x34 -x33 x32 -x31 -x30 -x29 -x28 -x27 -x26 -x25 x24 -x23 x22 -x21
-x20 -x19 x18 x17 -x16 x15 -x14 x13 -x12 -x11 -x10 x9 x8 -x7 x6 -x5 -x4 x3 -x2 -x1