PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-MEDINT (optimisation, medium integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark21166
Best CPU time to get the best result obtained on this benchmark4.31334
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 21166
Optimality of the best value was proved NO
Number of variables556
Total number of constraints180
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)2
Number of constraints which are nor clauses,nor cardinality constraints178
Minimum length of a constraint2
Maximum length of a constraint48
Number of terms in the objective function 304
Biggest coefficient in the objective function 62376
Number of bits for the biggest coefficient in the objective function 16
Sum of the numbers in the objective function 3092598
Number of bits of the sum of numbers in the objective function 22
Biggest number in a constraint 62376
Number of bits of the biggest number in a constraint 16
Biggest sum of numbers in a constraint 3092598
Number of bits of the biggest sum of numbers22
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3731033OPT21166 0.685895 0.687817
PB11: Sat4j Res//CP 2.3.0 (complete)3731034OPT21166 4.31334 3.7644
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3731032OPT21166 4.39333 7.23224
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687500OPT21166 6.02308 4.73766
PB07: bsolo 3.0.17 (complete)3731029SAT (TO)21166 1800.01 1800.31
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687501SAT (TO)25652 1800.01 1785.75
PB12: minisatp 1.0-2-g022594c (complete)3723000SAT (TO)60195 1800 1800.41
PB07: minisat+ 1.14 (complete)3721113SAT (TO)64860 1800.12 1800.53
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3731031SAT (TO)107340 1800.04 1791.19
SAT4J PB specific settings 2.3.2 snapshot (complete)3710151SAT (TO)247501 1800.06 1790.15
npSolver inc-topdown-quickBound (complete)3702295? (TO) 1800.01 1801.21
toysat 2012-05-17 (complete)3706223? (TO) 1800.02 1800.31
toysat 2012-06-01 (complete)3724596? (TO) 1800.03 1800.31
npSolver 1.0 (complete)3700699? (TO) 1800.05 1800.41
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3731030? (TO) 1800.06 1792.77
npSolver inc (complete)3699103? (TO) 1800.08 1800.51
npSolver 1.0 (fixed) (complete)3749856? (TO) 1800.1 1800.62
npSolver inc-topDown (complete)3697507? (TO) 1800.1 1800.51
npSolver inc-topDown (fixed) (complete)3746664? (TO) 1800.11 1800.68
pb2satCp2 2012-05-19 (complete)3694315? (TO) 1800.12 1800.51
npSolver inc (fixed) (complete)3748260? (TO) 1800.13 1800.41
pb2sat 2012-05-19 (complete)3695911? (TO) 1800.13 1800.51
npSolver inc-topdown-quickBound (fixed) (complete)3751452? (TO) 1800.35 1801.71

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 21166
Solution found:
-x556 -x513 -x470 -x422 -x374 x326 -x278 -x235 -x192 -x144 -x96 -x48 -x555 -x554 -x553 -x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544
-x543 -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x512 -x511 -x510 -x509 -x508 -x507 x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498
-x497 -x496 -x495 -x494 x493 -x469 -x468 -x467 -x466 -x465 -x464 -x463 -x462 -x461 -x460 x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452
-x451 -x450 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402 -x373
x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 x354 -x325 -x324 -x323 -x322
-x321 -x320 x319 -x318 -x317 -x316 -x315 -x314 -x313 x312 -x311 -x310 -x309 -x308 -x307 x306 -x277 -x276 -x275 -x274 -x273 -x272 -x271 -x270
-x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x234 -x233 -x232 -x231 -x230 x229 -x228 -x227 -x226 -x225 -x224
-x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178
x177 -x176 -x175 -x174 x173 x172 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126
-x125 -x124 -x95 -x94 x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x47 x46 -x45 -x44 -x43 -x42
-x41 x40 -x39 x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28 -x535 -x534 -x533 -x492 -x491 -x490 -x449 -x448 -x447 -x401 -x400 x399
-x353 -x352 -x351 -x305 -x304 -x303 -x257 x256 x255 -x214 -x213 -x212 -x171 -x170 -x169 -x123 -x122 x121 -x75 -x74 -x73 -x27 -x26 -x25 -x446
-x445 -x444 -x443 -x398 -x397 -x396 -x395 -x350 -x349 -x348 -x347 -x302 -x301 -x300 -x299 -x168 -x167 -x166 -x165 -x120 -x119 -x118 -x117
-x72 -x71 -x70 -x69 -x24 -x23 -x22 -x21 -x532 -x531 -x530 -x489 -x488 -x487 -x254 -x253 -x252 -x211 -x210 -x209 -x529 -x528 -x527 -x526
-x486 -x485 -x484 -x483 -x442 -x441 -x440 -x439 -x394 -x393 -x392 -x391 -x346 -x345 -x344 -x343 -x298 -x297 -x296 -x295 -x251 -x250 -x249
-x248 -x208 -x207 -x206 -x205 -x164 -x163 -x162 -x161 -x116 -x115 -x114 -x113 -x68 -x67 -x66 -x65 -x20 -x19 -x18 -x17 -x525 -x524 -x523
-x482 -x481 -x480 -x438 -x437 -x436 -x390 -x389 -x388 -x342 -x341 -x340 -x294 -x293 -x292 -x247 -x246 -x245 -x204 -x203 -x202 -x160 -x159
-x158 -x112 -x111 -x110 -x64 -x63 -x62 -x16 -x15 -x14 -x522 -x479 -x435 -x387 -x339 -x291 -x244 -x201 -x157 -x109 -x61 -x13 -x521 -x520
-x519 -x518 -x478 -x477 -x476 -x475 -x434 -x433 -x432 -x431 -x386 -x385 -x384 -x383 -x338 -x337 -x336 -x335 -x290 -x289 -x288 -x287 -x243
-x242 -x241 -x240 -x200 -x199 -x198 -x197 -x156 -x155 -x154 -x153 -x108 -x107 -x106 -x105 -x60 -x59 -x58 -x57 -x12 -x11 -x10 -x9 -x517 -x516
-x515 -x514 -x474 -x473 -x472 -x471 -x430 -x429 -x428 -x427 -x382 -x381 -x380 -x379 -x334 -x333 -x332 -x331 -x286 -x285 -x284 -x283 -x239
-x238 -x237 -x236 -x196 -x195 -x194 -x193 -x152 -x151 -x150 -x149 -x104 -x103 -x102 -x101 -x56 -x55 -x54 -x53 -x8 -x7 -x6 -x5 -x426 -x425
-x424 -x423 -x378 -x377 -x376 -x375 -x330 -x329 -x328 -x327 -x282 -x281 -x280 -x279 -x148 -x147 -x146 -x145 -x100 -x99 -x98 -x97 -x52 -x51
-x50 -x49 -x4 -x3 -x2 -x1