PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-BIGINT-LIN (optimisation, big integers, linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark24774
Best CPU time to get the best result obtained on this benchmark0.12298
Has Objective FunctionYES
(Un)Satisfiability was proved
Best value of the objective function
Optimality of the best value was proved
Number of variables484
Total number of constraints2343
Number of constraints which are clauses2343
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint3
Number of terms in the objective function 310
Biggest coefficient in the objective function 24649
Number of bits for the biggest coefficient in the objective function 15
Sum of the numbers in the objective function 3820750
Number of bits of the sum of numbers in the objective function 22
Biggest number in a constraint 24649
Number of bits of the biggest number in a constraint 15
Biggest sum of numbers in a constraint 3820750
Number of bits of the biggest sum of numbers22
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467669OPT24774 0.12298 0.127167
MinisatID 2.5.2-gmp (fixed) (complete)3497982OPT24774 0.134978 0.13564
Sat4j Resolution 2.3.0 (complete)3459945OPT24774 0.485925 0.318239
Sat4j CuttingPlanes 2.3.0 (complete)3457753OPT24774 0.527919 0.341213
Sat4j Res//CP 2.3.0 (complete)3455561OPT24774 0.684895 1.31267

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 24774
Solution found:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37
x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49 x50 x51 x52 x53 x54 x55 x56 x57 x58 x59 x60 x61 x62 x63 x64 x65 x66 x67 -x68 x69 x70 x71 x72
x73 x74 x75 x76 x77 x78 x79 x80 x81 x82 x83 x84 x85 x86 x87 x88 x89 x90 x91 x92 x93 x94 x95 x96 x97 x98 x99 x100 x101 x102 x103 x104 x105
x106 x107 x108 x109 x110 x111 x112 x113 x114 x115 x116 x117 x118 x119 x120 x121 x122 x123 x124 x125 x126 x127 x128 x129 x130 x131 x132 x133
x134 x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156
-x157 -x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 x166 x167 x168 x169 x170 x171 x172 x173 x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181
-x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204
-x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227
-x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250
-x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 x273
-x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296
-x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319
-x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 x330 x331 x332 x333 x334 x335 x336 x337 x338 x339 x340 x341 x342 x343 x344 x345
x346 x347 x348 x349 x350 x351 x352 x353 x354 x355 x356 x357 x358 x359 x360 x361 x362 x363 x364 x365 x366 x367 x368 x369 x370 x371 x372 x373
x374 x375 x376 x377 x378 x379 x380 x381 x382 x383 x384 x385 x386 x387 x388 x389 x390 x391 x392 x393 x394 x395 x396 x397 x398 x399 x400 x401
x402 x403 x404 x405 x406 x407 x408 x409 x410 x411 x412 x413 x414 x415 x416 x417 x418 x419 x420 x421 x422 x423 x424 x425 x426 x427 x428 x429
x430 x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452
-x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 x461 -x462 x463 x464 x465 x466 x467 x468 x469 x470 x471 x472 x473 x474 x475 x476 x477 x478
x479 x480 x481 x482 x483 x484