PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark-58
Best CPU time to get the best result obtained on this benchmark1797.13
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -58
Optimality of the best value was proved NO
Number of variables400
Total number of constraints601
Number of constraints which are clauses200
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints401
Minimum length of a constraint2
Maximum length of a constraint400
Number of terms in the objective function 200
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 200
Number of bits of the sum of numbers in the objective function 8
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 400
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)4964
Sum of products size (including duplicates)9928
Number of different products2482
Sum of products size4964

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E_2 2011-06-10 (fixed) (complete)3488679SAT-58 1797.13 1797.09
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3450759SAT-58 1800.06 1800.09
SCIP spx 2 2011-06-10 (fixed) (complete)3485237SAT-54 1797.07 1797.03
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452419SAT (TO)-54 1800.07 1800.02
clasp 2.0-R4191-patched (fixed) (complete)3491992SAT (TO)-48 1800.05 1800.01
clasp 2.0-R4191 [DEPRECATED] (complete)3469501SAT (TO)-48 1800.07 1800.02
bsolo 3.2 (complete)3462867SAT-44 1798.03 1798.02
Sat4j CuttingPlanes 2.3.0 (complete)3456271SAT (TO)-41 1800.25 1795.78
Sat4j Res//CP 2.3.0 (complete)3454079SAT (TO)-40 1800.33 931.429
Sat4j Resolution 2.3.0 (complete)3458463SAT (TO)-35 1800.16 1798.57
MinisatID 2.4.8 [DEPRECATED] (complete)3464527? (TO)-37 1800.05 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466187? (TO)-37 1800.06 1802.02
MinisatID 2.5.2-gmp (fixed) (complete)3496500? (exit code) 0.000999 0.00593397
MinisatID 2.5.2 (fixed) (complete)3490400? (exit code) 0.000999 0.00575492
borg pb-opt-11.04.03 (complete)3481616? (MO) 144.96 142.88

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -58
Solution found:
-x313 -x342 x248 x392 x390 x358 -x297 -x348 -x254 -x386 x286 -x345 -x376 -x231 -x294 -x280 x360 -x382 -x332 -x255 x323 -x321 -x359 -x343
x224 -x353 -x256 -x391 -x239 -x237 -x300 -x370 -x349 x335 -x305 x317 x377 x395 -x361 -x367 x299 -x267 x238 -x352 -x233 -x218 -x283 -x269
-x344 -x388 -x217 -x289 -x380 -x356 x322 -x216 -x339 -x319 x312 -x246 -x350 x347 x249 x271 -x272 x329 -x308 -x284 -x307 x366 -x354 -x334
-x275 -x310 x372 -x232 -x362 x315 x236 -x241 x220 -x290 -x281 -x375 -x262 x302 -x253 -x318 x303 x298 x210 -x234 x295 -x213 x340 -x245 -x261
x400 x355 x252 -x389 x379 x277 -x208 -x276 -x266 -x219 -x351 -x244 -x365 -x215 -x346 -x207 -x301 -x264 -x235 -x314 -x247 x328 -x285 x326
-x306 -x206 -x398 -x288 -x279 -x278 -x265 x258 x242 -x226 x282 -x397 -x357 -x381 -x292 -x214 -x205 -x393 -x311 -x296 -x274 -x240 -x225 x221
-x371 x325 x338 x385 -x320 -x374 x399 x309 x209 -x257 -x270 x259 -x223 x330 x203 x396 -x273 -x251 -x243 x204 -x268 x324 -x263 x331 -x383
-x230 -x368 x369 -x212 -x202 -x211 -x337 -x373 -x227 -x341 -x327 -x364 -x260 -x291 x228 -x363 -x201 -x333 -x304 -x229 -x222 -x250 x293 -x387
-x336 -x394 -x316 -x378 -x287 -x384 -x200 -x199 x198 x197 -x196 -x195 -x194 x193 -x192 x191 -x190 -x189 x188 -x187 -x186 -x185 x184 x183
-x182 x181 x180 -x179 -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 x170 -x169 -x168 x167 -x166 x165 -x164 -x163 x162 -x161 -x160 x159
-x158 x157 x156 -x155 x154 -x153 -x152 x151 x150 x149 x148 -x147 x146 x145 x144 x143 x142 x141 -x140 x139 -x138 x137 -x136 -x135 x134 -x133
x132 -x131 -x130 -x129 -x128 x127 -x126 -x125 -x124 -x123 -x122 -x121 -x120 x119 -x118 -x117 -x116 -x115 x114 -x113 -x112 -x111 x110 -x109
x108 -x107 -x106 -x105 -x104 -x103 -x102 -x101 x100 -x99 -x98 -x97 -x96 -x95 x94 -x93 -x92 -x91 x90 x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82
x81 x80 x79 -x78 -x77 -x76 x75 x74 -x73 x72 -x71 -x70 x69 -x68 -x67 -x66 x65 x64 -x63 -x62 -x61 -x60 -x59 -x58 x57 -x56 x55 -x54 -x53 -x52
-x51 -x50 -x49 -x48 x47 -x46 -x45 -x44 -x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 x33 x32 -x31 -x30 -x29 -x28 -x27 -x26 x25 -x24 -x23
-x22 -x21 -x20 -x19 -x18 -x17 -x16 -x15 -x14 -x13 -x12 -x11 -x10 -x9 x8 -x7 -x6 -x5 -x4 -x3 x2 x1