PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark-146
Best CPU time to get the best result obtained on this benchmark1797.07
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -131
Optimality of the best value was proved NO
Number of variables1000
Total number of constraints1501
Number of constraints which are clauses500
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints1001
Minimum length of a constraint2
Maximum length of a constraint1000
Number of terms in the objective function 500
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 500
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 1000
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)12540
Sum of products size (including duplicates)25080
Number of different products6270
Sum of products size12540

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E_2 2011-06-10 (fixed) (complete)3488664SAT-146 1797.07 1797.05
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3450744SAT (TO)-146 1800.07 1800.02
clasp 2.0-R4191-patched (fixed) (complete)3491977SAT (TO)-111 1800.04 1800.01
clasp 2.0-R4191 [DEPRECATED] (complete)3469486SAT (TO)-111 1800.07 1800.02
bsolo 3.2 (complete)3462852SAT (TO)-107 1800.12 1800.06
Sat4j CuttingPlanes 2.3.0 (complete)3456256SAT (TO)-95 1800.23 1797.3
Sat4j Res//CP 2.3.0 (complete)3454064SAT (TO)-94 1800.33 919.549
Sat4j Resolution 2.3.0 (complete)3458448SAT (TO)-78 1800.13 1798.75
SCIP spx 2 2011-06-10 (fixed) (complete)3485222SAT-15 1797.12 1797.06
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452404SAT (TO)-15 1800.13 1800.08
MinisatID 2.4.8 [DEPRECATED] (complete)3464512? (TO)-89 1800.06 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466172? (TO)-40 1800.07 1800.03
MinisatID 2.5.2 (fixed) (complete)3490385? (exit code) 0.001998 0.00599406
MinisatID 2.5.2-gmp (fixed) (complete)3496485? (exit code) 0.001998 0.00595597
borg pb-opt-11.04.03 (complete)3481601? (MO) 291.58 288.175

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -146
Solution found:
-x726 x906 x819 x684 x986 -x974 x873 -x952 -x631 -x770 -x902 x898 x828 -x606 -x993 -x972 -x812 -x658 -x793 x848 -x997 -x945 -x893 -x885 x816
-x752 -x685 x817 -x757 x625 -x814 -x894 -x973 -x617 -x858 -x943 x918 -x781 -x841 -x929 -x587 x1000 x691 x629 -x711 -x971 -x593 x755 -x674
x831 x730 -x673 x909 -x890 -x879 -x830 -x892 -x567 -x632 -x601 -x630 -x667 -x565 x643 -x905 -x575 x788 -x697 -x678 x964 -x896 x907 -x656
-x754 -x559 -x583 -x995 -x743 -x689 -x670 -x557 -x942 -x880 -x845 -x780 -x735 -x710 x910 x775 x767 -x712 -x823 -x794 x784 -x683 -x662 -x605
x900 -x613 x877 -x548 -x776 -x576 -x732 x916 -x856 x999 -x796 -x951 -x950 -x588 -x547 -x976 -x843 -x930 -x834 -x544 -x737 -x750 x739 -x863
-x749 x645 -x620 x600 x795 -x700 -x948 -x821 x701 -x875 x707 -x668 -x722 -x675 x562 -x889 -x924 -x769 -x798 x539 -x660 x748 -x962 -x708
-x738 -x833 -x642 -x729 x985 -x687 -x640 x966 -x810 -x694 x759 -x955 -x903 x637 -x983 -x865 x771 -x537 x826 x939 -x932 x797 x731 x982 -x876
x682 x803 -x532 -x838 -x638 -x802 x965 -x531 -x753 x679 -x713 x665 x599 -x530 -x967 -x840 -x555 x720 -x805 -x584 -x560 x734 -x733 x864 -x984
-x960 -x891 -x536 -x949 -x768 -x854 x958 -x589 x969 x760 -x696 -x615 -x740 -x860 -x623 -x604 x883 x778 x917 -x607 -x970 x609 x914 -x842
-x827 x703 x571 -x946 -x959 -x920 -x725 -x523 x791 -x936 x981 -x718 -x835 x806 -x522 x953 -x855 x818 -x596 -x534 -x556 -x923 -x672 -x649
-x577 x695 -x839 x744 -x704 -x919 -x688 x746 -x912 -x808 -x671 x614 -x563 -x677 x857 x992 -x772 -x550 -x558 -x709 -x926 -x991 -x569 x908
-x852 x836 -x621 -x519 -x652 x886 -x822 x899 x751 -x517 -x783 -x529 -x820 -x764 -x867 -x716 -x516 -x927 x693 x651 -x639 x815 -x570 -x765
-x944 -x545 -x998 x626 x925 -x853 -x773 -x686 -x654 -x566 -x549 -x956 -x636 -x758 -x542 x622 -x635 -x514 x895 -x872 -x846 x789 -x756 -x655
x618 x564 -x619 -x602 x742 x978 -x938 -x996 x868 -x513 -x947 -x552 -x646 -x627 -x715 -x568 x931 -x904 x782 -x698 -x657 -x581 -x533 -x901
-x598 -x897 -x979 -x994 -x661 -x580 x518 -x870 x963 x525 x937 x813 -x747 -x610 -x551 -x592 -x988 x721 -x871 -x807 -x520 -x515 -x647 x844
-x509 -x977 -x824 x761 -x641 -x524 -x579 -x719 -x659 -x590 -x792 -x935 -x653 -x887 -x528 -x508 -x957 -x837 x681 -x597 -x664 -x980 x799 -x779
x975 -x762 x804 -x888 x745 -x507 -x913 x859 -x648 -x541 -x591 -x851 -x940 x869 -x934 x628 x717 x811 x663 -x582 -x578 -x535 -x543 -x990 -x928
-x724 -x989 -x774 -x505 -x850 -x763 -x705 -x616 -x594 -x702 -x608 -x624 x736 -x666 -x714 -x504 x933 -x825 -x786 -x669 -x644 -x612 -x603
-x586 x526 -x512 -x538 -x954 -x866 -x511 x572 x941 -x862 -x800 -x809 -x585 -x503 x690 x561 -x554 -x540 -x728 x847 -x553 x884 -x961 x832
-x874 -x680 -x506 -x502 x968 -x922 x881 x878 x790 x785 -x723 x692 x634 -x595 -x510 x915 -x987 x829 -x727 -x521 x911 -x699 x861 -x849 -x527
-x501 -x801 x787 x741 x706 -x546 x882 x574 -x650 x921 -x633 -x777 -x573 -x611 -x766 -x676 -x500 -x499 x498 -x497 x496 x495 -x494 x493 -x492
x491 x490 x489 -x488 x487 -x486 -x485 -x484 -x483 -x482 -x481 x480 x479 -x478 -x477 -x476 -x475 x474 x473 x472 x471 -x470 -x469 -x468 x467
-x466 -x465 -x464 -x463 -x462 x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 x451 x450 -x449 -x448 x447 x446 -x445 -x444 x443
-x442 -x441 -x440 -x439 -x438 -x437 -x436 x435 x434 -x433 x432 -x431 -x430 x429 x428 -x427 x426 -x425 -x424 x423 x422 -x421 -x420 x419 -x418
-x417 -x416 -x415 -x414 x413 x412 -x411 -x410 -x409 -x408 -x407 -x406 x405 -x404 x403 x402 x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394
-x393 -x392 x391 -x390 -x389 -x388 -x387 -x386 x385 -x384 -x383 -x382 -x381 x380 x379 -x378 -x377 x376 -x375 x374 -x373 x372 -x371 -x370
-x369 -x368 x367 x366 x365 -x364 x363 x362 -x361 -x360 -x359 x358 -x357 x356 x355 x354 x353 x352 x351 -x350 x349 -x348 -x347 x346 -x345
-x344 x343 -x342 -x341 -x340 -x339 -x338 -x337 -x336 x335 x334 -x333 -x332 -x331 -x330 -x329 -x328 x327 -x326 -x325 -x324 -x323 -x322 x321
-x320 -x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 x307 -x306 -x305 -x304 -x303 -x302 x301 x300 -x299 x298 -x297
x296 -x295 -x294 -x293 x292 -x291 -x290 -x289 -x288 -x287 x286 -x285 -x284 -x283 -x282 -x281 x280 -x279 -x278 -x277 -x276 -x275 x274 -x273
-x272 -x271 -x270 x269 -x268 -x267 x266 x265 x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 x256 -x255 x254 -x253 -x252 -x251 x250 x249
-x248 -x247 -x246 -x245 -x244 x243 -x242 -x241 -x240 -x239 -x238 x237 -x236 -x235 -x234 -x233 x232 -x231 -x230 x229 -x228 x227 -x226 -x225
-x224 x223 -x222 -x221 -x220 -x219 x218 -x217 x216 -x215 -x214 -x213 -x212 x211 x210 x209 -x208 -x207 -x206 -x205 -x204 -x203 x202 -x201
-x200 x199 x198 -x197 -x196 -x195 x194 -x193 -x192 -x191 -x190 -x189 x188 x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 x177
x176 -x175 -x174 x173 x172 x171 x170 x169 x168 -x167 x166 -x165 x164 -x163 x162 -x161 -x160 x159 -x158 x157 -x156 x155 -x154 x153 -x152
-x151 x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140 x139 x138 -x137 x136 -x135 -x134 x133 -x132 -x131 -x130 -x129 -x128
x127 -x126 -x125 x124 -x123 -x122 -x121 x120 -x119 -x118 -x117 x116 x115 -x114 x113 -x112 x111 x110 -x109 -x108 -x107 -x106 x105 -x104 x103
-x102 x101 -x100 -x99 -x98 -x97 -x96 -x95 x94 -x93 x92 -x91 x90 -x89 -x88 -x87 x86 -x85 -x84 -x83 -x82 -x81 x80 -x79 -x78 -x77 -x76 -x75
-x74 -x73 -x72 -x71 x70 -x69 -x68 x67 x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 x58 -x57 -x56 -x55 -x54 x53 x52 -x51 -x50 x49 -x48 -x47 x46
-x45 -x44 -x43 -x42 -x41 -x40 -x39 x38 -x37 -x36 -x35 -x34 -x33 x32 -x31 -x30 -x29 x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 x17
-x16 -x15 -x14 x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 x5 -x4 -x3 -x2 -x1