PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark-143
Best CPU time to get the best result obtained on this benchmark1797.2
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -137
Optimality of the best value was proved NO
Number of variables1000
Total number of constraints1501
Number of constraints which are clauses500
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints1001
Minimum length of a constraint2
Maximum length of a constraint1000
Number of terms in the objective function 500
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 500
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 1000
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)12656
Sum of products size (including duplicates)25312
Number of different products6328
Sum of products size12656

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E_2 2011-06-10 (fixed) (complete)3488652SAT-143 1797.2 1797.18
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3450732SAT (TO)-143 1800.1 1800.07
clasp 2.0-R4191-patched (fixed) (complete)3491965SAT (TO)-107 1800.06 1800.01
clasp 2.0-R4191 [DEPRECATED] (complete)3469474SAT (TO)-107 1800.07 1800.03
bsolo 3.2 (complete)3462840SAT-106 1798.06 1798
Sat4j CuttingPlanes 2.3.0 (complete)3456244SAT (TO)-94 1800.19 1797.27
Sat4j Res//CP 2.3.0 (complete)3454052SAT (TO)-93 1800.28 919.466
Sat4j Resolution 2.3.0 (complete)3458436SAT (TO)-80 1800.15 1798.76
SCIP spx 2 2011-06-10 (fixed) (complete)3485210SAT-12 1797.11 1797.07
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452392SAT (TO)-12 1800.06 1800.02
MinisatID 2.4.8 [DEPRECATED] (complete)3464500? (TO)-83 1800.1 1800.13
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466160? (TO)-36 1800.05 1800.03
MinisatID 2.5.2-gmp (fixed) (complete)3496473? (exit code) 0.001998 0.00592701
MinisatID 2.5.2 (fixed) (complete)3490373? (exit code) 0.001999 0.00570792
borg pb-opt-11.04.03 (complete)3481589? (MO) 288.87 285.981

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -143
Solution found:
-x912 x880 -x951 -x964 x635 -x959 x997 -x920 -x750 x623 -x884 -x757 -x715 -x992 x895 x940 -x782 -x926 -x906 -x790 -x707 -x583 x829 -x969
-x685 x821 -x891 -x696 x925 -x1000 -x894 -x879 -x945 -x832 -x928 -x859 -x854 x770 -x828 -x916 -x801 -x930 -x820 -x813 x933 x839 x977 x838
-x684 x629 -x837 x991 -x740 -x860 -x908 x751 -x559 -x943 -x805 -x678 -x614 -x819 -x760 x995 -x913 -x779 -x794 x648 -x753 x901 x998 x975
-x554 -x612 -x659 -x695 -x866 -x551 x883 x855 x953 -x862 -x936 -x549 -x798 -x771 -x795 x962 x954 x814 -x546 x877 x577 x996 x958 -x931 -x944
x553 -x683 -x621 x919 -x848 x602 -x593 -x780 -x956 -x970 x637 -x607 -x609 -x541 -x574 x873 -x543 -x627 -x979 x957 -x806 -x759 -x616 -x669
-x539 x900 -x889 x688 -x671 -x636 -x948 -x905 -x822 x664 -x641 x737 -x903 x980 -x681 x633 -x847 -x647 -x852 x793 -x987 -x836 -x815 x743 x613
-x850 -x692 -x595 x773 x682 x555 x981 -x534 -x842 x784 x849 x675 -x934 x976 -x888 -x818 -x597 x777 x896 -x626 -x651 -x679 -x937 x825 -x610
-x581 x856 -x722 -x530 x592 -x765 x796 x978 -x985 -x853 -x952 -x947 -x676 -x560 x994 x786 -x890 -x990 -x863 -x565 -x528 -x756 -x701 -x661
-x775 -x950 x942 -x643 -x764 -x694 -x788 -x960 -x619 -x767 x713 -x672 -x599 -x561 x923 -x844 -x525 -x674 x904 -x827 -x772 -x955 -x841 -x869
x749 -x649 x658 -x586 -x523 x634 -x857 x911 x708 x677 x758 -x834 x735 -x687 x742 -x666 -x736 -x601 -x909 -x804 -x733 -x569 -x620 -x748 -x754
-x730 -x744 -x654 -x640 -x618 -x585 -x572 -x563 -x527 -x939 -x897 -x725 -x941 -x914 -x752 -x802 x575 x547 x537 -x840 x600 -x972 -x785 -x665
x811 -x729 -x588 -x540 x893 x723 -x568 x571 x792 -x579 x732 x524 -x556 -x521 -x835 -x727 -x982 -x632 -x622 -x871 -x745 x721 -x615 -x596
-x741 -x646 x867 x706 -x517 -x699 x807 x886 -x872 -x755 x663 -x545 -x817 -x921 -x542 -x973 -x823 x580 -x638 x988 -x698 -x831 x876 -x851
-x532 -x861 -x833 x874 x882 x642 -x673 x875 x589 -x907 -x693 -x512 x965 -x881 x781 -x520 -x690 x535 -x924 -x598 -x984 -x747 -x983 -x511
-x968 -x739 -x728 x703 -x590 -x533 -x578 x710 x989 -x519 -x799 -x719 -x809 -x510 -x986 x917 x864 -x608 -x536 -x516 -x515 -x656 -x702 -x766
-x870 -x582 -x918 -x509 -x845 -x526 -x652 -x938 -x961 -x704 -x800 -x885 -x734 -x686 -x508 x922 x714 -x709 x689 -x660 -x738 -x558 -x763 -x971
x644 -x518 -x726 -x717 x630 x604 -x691 -x769 x718 -x617 -x522 -x544 x963 -x506 -x902 x826 -x624 -x531 x513 -x887 -x606 -x949 -x824 -x810
x967 -x567 -x700 -x946 -x505 x993 x935 -x787 -x705 -x605 x584 -x552 -x645 -x776 x591 x915 -x557 x966 -x507 -x668 -x504 -x932 -x812 -x639
-x858 -x898 x974 -x878 -x653 -x697 -x662 -x803 x783 -x587 -x503 -x899 -x762 -x657 -x566 -x514 x564 -x797 x631 -x711 -x892 x768 -x816 -x570
-x573 -x502 -x929 -x761 -x716 -x712 -x670 -x667 -x625 -x611 -x603 x529 -x731 x868 -x774 -x655 x550 -x538 -x594 -x650 -x680 -x843 x501 -x927
-x910 -x846 x830 x808 x724 -x548 -x628 -x746 x778 x865 -x999 -x562 -x576 x789 -x720 x791 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493
-x492 -x491 -x490 -x489 -x488 x487 -x486 x485 x484 x483 -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 x473 x472 x471 x470 -x469 x468
-x467 -x466 -x465 x464 -x463 -x462 -x461 -x460 x459 -x458 -x457 x456 -x455 -x454 -x453 x452 -x451 -x450 x449 -x448 -x447 x446 x445 x444
-x443 -x442 x441 -x440 x439 -x438 x437 -x436 -x435 x434 -x433 x432 x431 x430 x429 x428 -x427 x426 -x425 x424 -x423 -x422 x421 -x420 -x419
-x418 -x417 -x416 -x415 x414 x413 -x412 -x411 -x410 x409 x408 -x407 -x406 x405 -x404 x403 -x402 -x401 -x400 -x399 -x398 x397 -x396 -x395
x394 -x393 -x392 -x391 -x390 x389 -x388 -x387 -x386 x385 x384 -x383 -x382 x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 x371
-x370 -x369 -x368 -x367 -x366 -x365 -x364 x363 -x362 -x361 x360 -x359 x358 -x357 -x356 -x355 -x354 -x353 -x352 x351 x350 -x349 -x348 -x347
-x346 -x345 -x344 -x343 x342 x341 x340 -x339 -x338 x337 -x336 x335 x334 x333 x332 x331 -x330 -x329 -x328 x327 -x326 -x325 -x324 x323 x322
-x321 x320 -x319 -x318 -x317 x316 -x315 -x314 -x313 -x312 -x311 x310 x309 -x308 -x307 -x306 -x305 -x304 x303 x302 -x301 x300 -x299 -x298
-x297 -x296 x295 -x294 -x293 -x292 -x291 x290 -x289 x288 -x287 -x286 x285 -x284 -x283 -x282 -x281 x280 x279 -x278 -x277 x276 -x275 -x274
-x273 -x272 -x271 -x270 x269 -x268 x267 x266 -x265 -x264 x263 -x262 -x261 -x260 x259 -x258 -x257 x256 -x255 x254 -x253 x252 -x251 x250 -x249
x248 -x247 -x246 -x245 x244 -x243 -x242 x241 x240 x239 x238 -x237 x236 -x235 x234 x233 -x232 -x231 -x230 x229 -x228 x227 -x226 -x225 -x224
-x223 -x222 -x221 x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 x202 x201 -x200
-x199 -x198 -x197 -x196 x195 x194 x193 x192 x191 -x190 -x189 -x188 x187 -x186 -x185 x184 -x183 -x182 -x181 x180 -x179 x178 -x177 -x176 -x175
x174 -x173 -x172 -x171 x170 x169 -x168 -x167 x166 -x165 -x164 -x163 x162 x161 -x160 x159 -x158 x157 -x156 -x155 x154 -x153 x152 x151 x150
x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 x141 x140 -x139 x138 -x137 x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 x126
-x125 -x124 -x123 -x122 -x121 -x120 x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 x110 -x109 -x108 x107 -x106 -x105 -x104 x103 -x102
-x101 -x100 x99 -x98 x97 x96 -x95 -x94 -x93 -x92 -x91 x90 -x89 x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 x78 -x77 -x76 -x75 -x74 -x73
x72 -x71 -x70 -x69 -x68 x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 x58 -x57 -x56 -x55 -x54 -x53 x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44
-x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 x28 -x27 -x26 x25 -x24 -x23 -x22 -x21 x20 -x19 -x18 x17 -x16 -x15
x14 -x13 -x12 -x11 -x10 x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 -x1