PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark
normalized-PB06/OPT-SMALLINT/web/www.nlsde.buaa.edu.cn/
~kexu/benchmarks/frb35-17-opb/normalized-frb35-17-5.opb

Jump to solvers results

General information on the benchmark

Namenormalized-PB06/OPT-SMALLINT/web/www.nlsde.buaa.edu.cn/
~kexu/benchmarks/frb35-17-opb/normalized-frb35-17-5.opb
MD5SUM7f24dba3f3d4b877b96bd50f5b27c089
Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark-34
Best CPU time to get the best result obtained on this benchmark1797.15
Has Objective FunctionYES
SatisfiableYES
(Un)Satisfiability was provedYES
Best value of the objective function -35
Optimality of the best value was proved YES
Number of variables595
Total number of constraints28143
Number of constraints which are clauses28143
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint2
Number of terms in the objective function 595
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 595
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 595
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx 2 2011-06-10 (fixed) (complete)3485567SAT-34 1797.15 1797.11
pwbo 1.1 (complete)3500350SAT (TO)-34 1800.21 900.147
SCIP spx E_2 2011-06-10 (fixed) (complete)3489009SAT-33 1797.28 1797.21
SCIP spx E SCIP 2.0.1.4b with SoPlex 1.5.0.4 [DEPRECATED] (complete)3451089SAT (TO)-33 1800.08 1800.14
SCIP spx SCIP 2.0.1.4. with SoPlex 1.5.0.4 [DEPRECATED] (complete)3452749SAT (TO)-32 1800.08 1800.04
bsolo 3.2 (complete)3463197SAT-30 1798.02 1797.96
clasp 2.0-R4191 (complete)3468304SAT (TO)-30 1800.11 1800.03
Sat4j Resolution 2.3.0 (complete)3459057SAT (TO)-30 1800.21 1794.87
Sat4j Res//CP 2.3.0 (complete)3454673SAT (TO)-30 1800.28 947.145
Sat4j CuttingPlanes 2.3.0 (complete)3456865SAT (TO)-29 1800.27 1788.8
MinisatID 2.4.8 [DEPRECATED] (complete)3464857? (TO)-26 1800.03 1800.02
MinisatID 2.5.2 (fixed) (complete)3490730? (TO)-26 1800.06 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3497094? (TO)-26 1800.07 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466781? (TO)-26 1800.12 1800.12
borg pb-opt-11.04.03 (complete)3481921? (MO) 290.87 287.086
wbo 1.6 (complete)3460985? (TO) 1800.12 1800.05

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -34
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 x109 -x110 -x111 -x112
-x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135
-x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 x158
-x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 x179 -x180 -x181
-x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204
-x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227
-x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 x247 -x248 -x249 -x250
-x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 x269 -x270 -x271 -x272 -x273
-x274 -x275 -x276 -x277 -x278 -x279 x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 x296
-x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319
-x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 x342
-x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365
-x366 x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388
-x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411
-x412 -x413 -x414 x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 x431 -x432 -x433 -x434
-x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 x454 -x455 -x456 -x457
-x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480
-x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503
-x504 -x505 -x506 -x507 -x508 -x509 x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 x525 -x526
-x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549
-x550 -x551 -x552 -x553 -x554 -x555 x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 x567 -x568 -x569 -x570 -x571 -x572
-x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595