PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark1
Best CPU time to get the best result obtained on this benchmark0.142978
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 1
Optimality of the best value was proved YES
Number of variables411
Total number of constraints477
Number of constraints which are clauses387
Number of constraints which are cardinality constraints (but not clauses)90
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint16
Number of terms in the objective function 411
Biggest coefficient in the objective function 268
Number of bits for the biggest coefficient in the objective function 9
Sum of the numbers in the objective function 1129
Number of bits of the sum of numbers in the objective function 11
Biggest number in a constraint 268
Number of bits of the biggest number in a constraint 9
Biggest sum of numbers in a constraint 1129
Number of bits of the biggest sum of numbers11
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
bsolo 3.2 (complete)3463677OPT1 0.142978 0.143106
SCIP spx E_2 2011-06-10 (fixed) (complete)3489489OPT1 0.469928 0.469636
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451569OPT1 0.476926 0.476323
SCIP spx 2 2011-06-10 (fixed) (complete)3486047OPT1 0.476926 0.476798
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453229OPT1 0.527919 0.528966
borg pb-opt-11.04.03 (complete)3482075OPT1 0.941856 1.03543
Sat4j Res//CP 2.3.0 (complete)3455167SAT (TO)6 1800.22 988.052
Sat4j CuttingPlanes 2.3.0 (complete)3457359SAT (TO)6 1800.3 1796.4
clasp 2.0-R4191 (complete)3468784SAT (TO)8 1800.08 1800.02
Sat4j Resolution 2.3.0 (complete)3459551SAT (TO)8 1800.21 1796.28
pwbo 1.1 (complete)3500305SAT (TO)14 1800.1 900.042
MinisatID 2.4.8 [DEPRECATED] (complete)3465337? (TO)19 1800.06 1800.02
MinisatID 2.5.2 (fixed) (complete)3491210? (TO)20 1800.06 1800.01
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467275? (TO)23 1800.08 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3497588? (TO)24 1800.07 1800.01
wbo 1.6 (complete)3461465? (TO) 1800.13 1800.16

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 1
Solution found:
-x295 x231 -x206 x191 x139 x294 -x211 -x192 x143 -x359 -x302 -x279 x235 -x210 x196 x296 x233 x195 -x358 x297 -x213 x193 -x119 x362 -x298
x234 -x214 x194 -x180 -x83 -x238 x217 x179 -x164 -x118 -x82 x363 x215 -x122 -x84 -x216 x181 -x163 x85 x184 x168 -x123 x86 -x305 -x275 x230
x190 x138 -x306 -x205 x189 x142 -x385 -x301 -x278 x236 -x207 x200 -x212 -x360 -x313 -x299 -x239 x209 -x37 x364 -x317 -x237 x218 -x175 x174
-x120 -x124 -x366 x182 -x165 -x89 -x367 x183 x167 x90 -x381 -x303 -x274 x228 x203 x140 -x354 x232 x204 x144 -x384 -x353 x280 x229 -x199 -x33
-x240 x208 x114 x361 -x312 -x300 x226 -x197 -x146 x113 -x36 x365 -x316 x222 -x159 -x147 x369 -x283 x221 -x158 -x121 -x88 x368 x176 -x125
-x87 -x342 x177 x166 x126 -x71 x178 x169 x127 -x75 -x380 -x304 -x276 x201 x141 x227 x145 -x397 x386 x281 x248 -x223 -x149 -x32 -x401 -x355
x244 -x225 -x148 -x356 -x314 -x284 x243 -x198 x38 -x8 x357 -x318 -x282 x115 -x12 -x389 x373 -x338 -x219 x116 -x101 -x160 x117 -x341 -x320
-x220 x187 x161 x131 -x70 -x41 -x321 x188 x162 -x74 -x382 -x272 x245 -x202 x137 x28 -x308 -x277 x247 -x224 x136 -x396 x387 -x307 x273 -x153
-x34 -x400 -x285 -x390 -x376 -x315 x241 -x97 x39 -x7 -x388 -x377 -x319 -x11 -x372 -x337 -x323 -x242 x186 x134 -x100 x42 -x322 x185 x135 x40
-x370 x343 -x255 -x172 x130 -x72 -x259 -x173 x76 x379 -x265 x246 -x156 -x383 x271 -x157 x27 -x398 -x375 -x293 -x152 x29 -x402 -x391 -x374
-x309 x289 -x35 -x333 x310 x288 -x150 -x133 -x96 x31 -x9 x311 -x132 -x66 x43 x13 -x404 -x339 x327 -x171 -x102 -x65 -x405 -x170 -x371 x344
-x254 -x128 x73 -x61 -x15 -x258 x77 -x16 -x290 -x264 -x154 x378 -x292 -x3 -x399 -x92 -x2 -x403 x395 x30 -x407 -x394 -x330 -x286 -x151 x98
x51 x10 -x406 -x332 x331 -x47 x14 -x334 -x326 -x287 -x103 -x57 -x46 -x18 x340 x67 -x17 x336 -x324 -x256 -x129 x104 x68 -x60 -x345 -x260 x105
x69 -x291 -x266 -x155 -x329 x48 -x328 -x91 x50 x4 x411 -x392 -x268 -x93 x5 x250 x99 x6 -x393 x249 x95 -x56 -x44 x22 x335 x106 -x352 -x325
x257 x80 -x62 -x45 x348 -x261 x81 x49 -x269 -x267 x410 -x54 x25 -x94 x26 x408 -x349 -x112 -x79 -x58 x21 -x351 x251 x109 -x78 x252 x107 -x63
x19 -x346 x253 x270 x24 x23 -x111 -x350 -x110 -x53 -x409 x52 -x59 -x263 x108 x55 x20 -x347 x262 -x64 x1