PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark0
Best CPU time to get the best result obtained on this benchmark0.06299
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 0
Optimality of the best value was proved YES
Number of variables435
Total number of constraints501
Number of constraints which are clauses403
Number of constraints which are cardinality constraints (but not clauses)98
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint16
Number of terms in the objective function 435
Biggest coefficient in the objective function 282
Number of bits for the biggest coefficient in the objective function 9
Sum of the numbers in the objective function 1168
Number of bits of the sum of numbers in the objective function 11
Biggest number in a constraint 282
Number of bits of the biggest number in a constraint 9
Biggest sum of numbers in a constraint 1168
Number of bits of the biggest sum of numbers11
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx 2 2011-06-10 (fixed) (complete)3486046OPT0 0.06299 0.063183
SCIP spx E_2 2011-06-10 (fixed) (complete)3489488OPT0 0.06399 0.0652089
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451568OPT0 0.065989 0.0658371
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453228OPT0 0.068989 0.070185
borg pb-opt-11.04.03 (complete)3482074OPT0 0.559914 0.818833
bsolo 3.2 (complete)3463676OPT0 0.652899 0.653206
Sat4j Res//CP 2.3.0 (complete)3455166SAT (TO)3 1800.26 991.181
Sat4j CuttingPlanes 2.3.0 (complete)3457358SAT (TO)3 1800.33 1796.02
Sat4j Resolution 2.3.0 (complete)3459550SAT (TO)5 1800.15 1796.66
clasp 2.0-R4191 (complete)3468783SAT (TO)8 1800.08 1800.02
pwbo 1.1 (complete)3500304SAT (TO)11 1800.26 900.154
MinisatID 2.4.8 [DEPRECATED] (complete)3465336? (TO)15 1800.07 1800.12
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467274? (TO)18 1800.03 1800.02
MinisatID 2.5.2 (fixed) (complete)3491209? (TO)18 1800.05 1800.01
MinisatID 2.5.2-gmp (fixed) (complete)3497587? (TO)21 1800.06 1800.01
wbo 1.6 (complete)3461464? (TO) 1800.09 1800.06

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 0
Solution found:
x1 -x214 -x307 x392 -x56 x136 x205 x209 -x55 -x96 x202 -x232 -x118 -x203 -x219 x310 x106 -x218 -x286 -x59 -x110 x140 -x217 -x60 x103 x99
x104 x100 x268 -x290 -x306 x391 x135 -x173 -x213 -x115 -x230 x311 -x57 x95 -x117 -x208 -x231 x309 -x58 x141 -x227 -x396 -x61 x97 -x114 x139
-x204 -x223 x264 -x285 -x41 x102 -x176 x101 -x109 -x177 -x215 -x287 -x216 -x291 -x76 x105 -x199 x267 -x289 -x333 -x229 -x308 x393 -x116 x137
-x172 -x212 -x228 x312 -x427 x34 x138 -x295 -x397 x35 x142 x174 -x206 -x329 -x395 -x54 x122 x179 -x226 -x42 x98 -x113 -x178 -x195 -x222 x263
-x328 -x46 x82 -x40 x81 -x107 x265 -x288 -x38 x79 x270 -x271 -x334 -x75 x198 x269 -x272 -x332 x37 -x305 x394 x36 -x210 x296 -x398 -x426 -x51
-x134 -x300 -x380 -x53 x123 x175 -x207 -x294 -x93 -x127 x159 -x224 -x292 -x430 -x50 -x72 -x94 -x111 x121 x158 -x194 -x220 -x330 -x431 x90
x119 -x157 -x283 -x331 -x45 -x71 x86 -x108 -x196 x266 -x284 -x335 x201 x249 -x280 -x313 -x39 x77 x80 x200 -x250 -x276 x25 -x133 x390 x24
-x52 -x132 -x211 -x304 x381 -x428 x23 -x92 x170 -x385 x433 -x91 -x131 x171 -x299 -x379 x432 -x167 -x225 -x282 -x377 -x49 -x112 -x126 -x163
-x221 -x281 -x293 x89 x261 -x327 -x43 -x73 x85 x120 -x155 -x197 x262 -x315 -x74 -x156 x180 x258 -x279 -x319 x78 -x181 x254 -x275 -x314 -x374
x33 x148 x169 -x29 x168 -x303 -x348 x389 x429 x415 x21 -x130 -x297 -x370 -x384 -x414 -x22 -x166 x260 -x324 -x413 -x47 -x124 -x162 x259 -x326
-x369 -x378 x87 -x192 x351 -x44 x83 -x193 -x323 x352 -x70 x189 -x257 -x277 -x375 -x18 x66 -x185 -x246 x253 -x273 -x318 -x373 -x32 x147 -x425
-x28 -x301 x347 -x388 x404 -x424 -x423 -x14 -x128 -x298 -x325 x349 -x382 x419 -x152 -x164 -x191 x354 -x13 -x48 -x125 -x160 -x190 x242 x353
-x371 -x411 -x67 -x88 x372 x408 -x412 -x69 x84 -x322 -x376 -x19 x188 -x255 -x278 x355 -x17 -x65 -x184 x245 x251 -x274 -x316 -x30 x149 -x26
-x302 -x386 x403 x153 -x422 -x129 x151 x350 -x383 -x418 -x165 x409 -x15 -x68 -x161 x241 -x339 x407 x16 -x338 -x368 -x20 x243 -x320 x357 x2
-x186 x248 -x256 x360 -x64 -x182 x247 -x252 -x317 x356 -x31 x150 -x27 x154 -x387 x405 x146 x406 -x420 x410 -x416 x346 -x365 x402 x343 -x367
-x12 x4 x244 -x321 -x336 -x364 x5 -x187 x233 -x337 x3 -x62 -x183 x234 x358 x435 x345 -x421 -x10 x145 -x366 -x417 -x9 x143 -x238 x344 -x362
x434 -x11 x144 -x237 x342 x401 -x8 x239 -x361 x399 -x7 x240 x340 -x363 x400 -x236 x341 x6 -x63 x235 x359