PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark285
Best CPU time to get the best result obtained on this benchmark1797.09
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 285
Optimality of the best value was proved NO
Number of variables664
Total number of constraints3035
Number of constraints which are clauses3035
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint32
Number of terms in the objective function 664
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 664
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 664
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx 2 2011-06-10 (fixed) (complete)3485439SAT285 1797.09 1797.07
SCIP spx E_2 2011-06-10 (fixed) (complete)3488881SAT285 1797.1 1797.06
bsolo 3.2 (complete)3463069SAT285 1798.01 1797.95
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452621SAT (TO)285 1800.05 1800.03
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3450961SAT (TO)285 1800.05 1800.02
pwbo 1.1 (complete)3500289SAT (TO)285 1800.24 900.137
Sat4j Res//CP 2.3.0 (complete)3454420SAT (TO)285 1800.24 948.218
Sat4j Resolution 2.3.0 (complete)3458804SAT (TO)287 1800.11 1797.16
clasp 2.0-R4191 (complete)3468176SAT (TO)291 1800.08 1800.12
Sat4j CuttingPlanes 2.3.0 (complete)3456612SAT (TO)296 1800.22 1796.47
MinisatID 2.4.8 [DEPRECATED] (complete)3464729? (TO)286 1800.05 1800.02
MinisatID 2.5.2 (fixed) (complete)3490602? (TO)286 1800.07 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3496841? (TO)289 1800.07 1802.01
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466528? (TO)290 1800.07 1800.02
borg pb-opt-11.04.03 (complete)3481803? (MO) 147.72 146.278
wbo 1.6 (complete)3460857? (TO) 1800.11 1800.06

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 285
Solution found:
x664 -x663 x662 -x661 -x660 x659 x658 -x657 x656 -x655 x654 -x653 -x652 x651 x650 -x649 x648 -x647 x646 -x645 x644 -x643 -x642 x641 x640
-x639 x638 -x637 -x636 x635 x634 -x633 x632 -x631 x630 -x629 x628 -x627 -x626 x625 x624 -x623 x622 -x621 x620 -x619 -x618 x617 x616 -x615
x614 -x613 x612 -x611 -x610 x609 x608 -x607 x606 -x605 -x604 x603 x602 -x601 x600 -x599 x598 -x597 -x596 x595 -x594 -x593 -x592 x591 x590
-x589 x588 -x587 x586 -x585 x584 -x583 x582 -x581 x580 -x579 -x578 x577 x576 -x575 x574 -x573 -x572 x571 x570 -x569 x568 -x567 x566 -x565
-x564 x563 x562 -x561 x560 -x559 x558 -x557 -x556 x555 x554 -x553 x552 -x551 x550 -x549 x548 -x547 -x546 x545 x544 -x543 x542 -x541 -x540
-x539 -x538 x537 -x536 x535 x534 -x533 x532 -x531 x530 -x529 x528 -x527 -x526 x525 x524 -x523 x522 -x521 x520 -x519 x518 -x517 -x516 x515
x514 -x513 -x512 x511 -x510 x509 -x508 x507 -x506 -x505 -x504 x503 -x502 -x501 x500 -x499 -x498 x497 -x496 x495 -x494 x493 -x492 x491 x490
-x489 -x488 x487 -x486 -x485 -x484 -x483 -x482 x481 -x480 -x479 -x478 x477 -x476 x475 -x474 x473 -x472 x471 -x470 x469 -x468 x467 -x466 x465
-x464 x463 -x462 x461 -x460 x459 -x458 x457 -x456 -x455 -x454 x453 -x452 -x451 -x450 x449 -x448 x447 -x446 x445 -x444 -x443 -x442 x441 -x440
-x439 -x438 x437 -x436 x435 x434 -x433 -x432 x431 -x430 x429 -x428 x427 -x426 x425 -x424 -x423 -x422 x421 -x420 x419 -x418 x417 -x416 -x415
-x414 x413 -x412 x411 -x410 -x409 -x408 x407 -x406 -x405 -x404 x403 -x402 x401 -x400 x399 -x398 x397 -x396 x395 -x394 -x393 -x392 x391 -x390
-x389 -x388 x387 -x386 -x385 -x384 -x383 -x382 x381 -x380 -x379 -x378 x377 -x376 -x375 -x374 x373 -x372 -x371 -x370 x369 -x368 -x367 -x366
x365 -x364 x363 -x362 -x361 x360 -x359 -x358 x357 -x356 -x355 -x354 x353 -x352 x351 -x350 -x349 -x348 -x347 -x346 x345 -x344 x343 -x342
-x341 -x340 -x339 -x338 x337 -x336 x335 -x334 -x333 x332 -x331 -x330 x329 -x328 x327 -x326 -x325 -x324 x323 -x322 -x321 -x320 -x319 -x318
x317 -x316 -x315 -x314 x313 -x312 -x311 -x310 x309 -x308 -x307 -x306 x305 -x304 x303 -x302 -x301 -x300 x299 -x298 -x297 -x296 -x295 -x294
x293 -x292 -x291 -x290 x289 -x288 x287 -x286 -x285 -x284 x283 -x282 -x281 -x280 x279 -x278 -x277 -x276 x275 -x274 -x273 -x272 x271 -x270
-x269 -x268 -x267 -x266 x265 -x264 x263 -x262 -x261 -x260 x259 x258 -x257 -x256 x255 -x254 x253 -x252 x251 -x250 x249 -x248 x247 -x246 x245
-x244 x243 -x242 x241 -x240 x239 -x238 x237 -x236 x235 -x234 x233 -x232 x231 -x230 x229 -x228 x227 -x226 x225 -x224 x223 -x222 x221 -x220
x219 -x218 x217 -x216 x215 -x214 x213 -x212 x211 -x210 x209 -x208 x207 x206 -x205 -x204 x203 -x202 x201 -x200 x199 -x198 x197 -x196 x195
-x194 x193 -x192 x191 -x190 x189 -x188 x187 -x186 x185 -x184 x183 -x182 x181 -x180 x179 -x178 x177 -x176 x175 -x174 x173 -x172 x171 -x170
x169 -x168 x167 -x166 x165 -x164 x163 x162 -x161 -x160 x159 -x158 x157 -x156 x155 -x154 x153 -x152 x151 -x150 x149 -x148 x147 -x146 x145
-x144 x143 -x142 x141 x140 -x139 -x138 x137 -x136 x135 -x134 x133 -x132 x131 -x130 x129 -x128 x127 -x126 x125 -x124 x123 -x122 x121 -x120
x119 -x118 x117 -x116 x115 -x114 x113 -x112 x111 -x110 x109 -x108 x107 -x106 x105 -x104 x103 -x102 x101 -x100 x99 -x98 x97 -x96 x95 -x94 x93
-x92 x91 -x90 x89 x88 -x87 -x86 x85 -x84 x83 -x82 x81 -x80 x79 -x78 x77 -x76 x75 -x74 x73 -x72 x71 -x70 x69 -x68 x67 -x66 x65 -x64 x63 -x62
x61 -x60 x59 -x58 x57 -x56 x55 -x54 x53 -x52 x51 -x50 x49 -x48 x47 x46 -x45 -x44 x43 x42 -x41 -x40 x39 -x38 x37 -x36 x35 -x34 x33 -x32 x31
-x30 x29 -x28 x27 -x26 x25 -x24 x23 -x22 x21 -x20 x19 -x18 x17 -x16 x15 -x14 x13 -x12 x11 -x10 x9 -x8 x7 -x6 x5 -x4 x3 -x2 x1