PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark191
Best CPU time to get the best result obtained on this benchmark152.56
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 191
Optimality of the best value was proved NO
Number of variables528
Total number of constraints1816
Number of constraints which are clauses1816
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint8
Number of terms in the objective function 528
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 528
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 528
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451047OPT191 152.393 152.389
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452707OPT191 152.56 152.568
SCIP spx 2 2011-06-10 (fixed) (complete)3485525OPT191 153.537 153.542
SCIP spx E_2 2011-06-10 (fixed) (complete)3488967OPT191 166.01 166.009
pwbo 1.1 (complete)3500284SAT (TO)191 1800.08 900.042
Sat4j Resolution 2.3.0 (complete)3458929SAT (TO)194 1800.09 1795.54
Sat4j Res//CP 2.3.0 (complete)3454545SAT (TO)194 1800.12 963.365
Sat4j CuttingPlanes 2.3.0 (complete)3456737SAT (TO)194 1800.21 1797.67
bsolo 3.2 (complete)3463155SAT201 1798 1798.06
clasp 2.0-R4191 (complete)3468262SAT (TO)230 1800.07 1800.02
MinisatID 2.4.8 [DEPRECATED] (complete)3464815? (TO)197 1800.08 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3496966? (TO)199 1800.08 1800.01
MinisatID 2.5.2 (fixed) (complete)3490688? (TO)199 1800.1 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466653? (TO)200 1800.06 1800.02
borg pb-opt-11.04.03 (complete)3481879? (MO) 198.93 196.39
wbo 1.6 (complete)3460943? (TO) 1800.12 1800.15

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 191
Solution found:
x528 -x527 x526 -x525 x524 -x523 -x522 x521 x520 -x519 x518 -x517 x516 -x515 x514 -x513 x512 -x511 -x510 x509 x508 -x507 x506 -x505 x504
-x503 x502 -x501 x500 -x499 x498 -x497 x496 -x495 -x494 x493 -x492 -x491 -x490 -x489 -x488 -x487 x486 -x485 -x484 x483 x482 -x481 -x480
-x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 x469 -x468 -x467 -x466 -x465 -x464 -x463 x462 -x461 -x460 x459 x458 -x457 -x456
-x455 -x454 -x453 -x452 -x451 x450 -x449 -x448 x447 x446 -x445 x444 -x443 x442 -x441 x440 -x439 -x438 x437 x436 -x435 x434 -x433 -x432 -x431
-x430 -x429 -x428 -x427 -x426 -x425 -x424 x423 x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 x409 -x408 -x407
-x406 -x405 -x404 -x403 -x402 -x401 -x400 x399 x398 -x397 x396 -x395 x394 -x393 x392 -x391 -x390 x389 x388 -x387 x386 -x385 -x384 -x383
-x382 -x381 -x380 -x379 -x378 -x377 -x376 x375 x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 x365 -x364 -x363 x362 -x361 -x360 -x359
-x358 -x357 -x356 -x355 x354 -x353 -x352 x351 x350 -x349 x348 -x347 x346 -x345 x344 -x343 x342 -x341 x340 -x339 -x338 x337 -x336 -x335 -x334
-x333 -x332 -x331 -x330 -x329 -x328 x327 x326 -x325 x324 -x323 x322 -x321 x320 -x319 -x318 x317 x316 -x315 x314 -x313 -x312 -x311 -x310
-x309 -x308 -x307 x306 -x305 -x304 x303 x302 -x301 -x300 -x299 -x298 -x297 -x296 -x295 x294 -x293 -x292 x291 x290 -x289 -x288 -x287 -x286
-x285 -x284 -x283 -x282 -x281 -x280 x279 x278 -x277 -x276 -x275 -x274 x273 -x272 -x271 -x270 -x269 -x268 -x267 x266 -x265 x264 -x263 x262
-x261 x260 -x259 -x258 x257 x256 -x255 x254 -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 x243 x242 -x241 x240 -x239 x238
-x237 x236 -x235 x234 -x233 x232 -x231 -x230 x229 -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218 x217 -x216 -x215 -x214
-x213 -x212 x211 x210 -x209 -x208 -x207 x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197 -x196 x195 x194 -x193 -x192 x191 -x190
x189 x188 -x187 -x186 x185 -x184 x183 -x182 x181 -x180 x179 -x178 x177 -x176 x175 x174 -x173 -x172 x171 -x170 x169 -x168 x167 -x166 x165
-x164 x163 -x162 x161 -x160 x159 -x158 x157 x156 -x155 -x154 x153 -x152 x151 -x150 x149 -x148 x147 -x146 x145 -x144 x143 x142 -x141 -x140
x139 -x138 x137 -x136 x135 -x134 x133 -x132 x131 -x130 x129 -x128 x127 -x126 x125 x124 -x123 -x122 x121 -x120 x119 -x118 x117 -x116 x115
-x114 x113 -x112 x111 x110 -x109 -x108 x107 -x106 x105 -x104 x103 -x102 x101 -x100 x99 -x98 x97 -x96 x95 -x94 x93 -x92 x91 -x90 x89 -x88 x87
-x86 x85 -x84 x83 -x82 x81 -x80 x79 x78 -x77 x76 -x75 -x74 x73 -x72 x71 -x70 x69 -x68 x67 -x66 x65 -x64 x63 -x62 x61 x60 -x59 -x58 x57 -x56
x55 -x54 x53 -x52 x51 -x50 x49 -x48 x47 x46 -x45 -x44 x43 -x42 x41 -x40 x39 -x38 x37 -x36 x35 -x34 x33 -x32 x31 -x30 x29 -x28 x27 -x26 x25
-x24 x23 -x22 x21 -x20 x19 -x18 x17 -x16 x15 -x14 x13 -x12 -x11 -x10 x9 -x8 x7 x6 -x5 -x4 x3 x2 -x1