PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark207
Best CPU time to get the best result obtained on this benchmark59.8859
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 207
Optimality of the best value was proved YES
Number of variables498
Total number of constraints2431
Number of constraints which are clauses2431
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint32
Number of terms in the objective function 498
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 498
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 498
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx 2 2011-06-10 (fixed) (complete)3485437OPT207 59.8859 59.8862
SCIP spx E_2 2011-06-10 (fixed) (complete)3488879OPT207 60.5598 60.5589
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452619OPT207 61.0297 61.0286
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3450959OPT207 63.3844 63.3842
pwbo 1.1 (complete)3500275OPT207 905.922 452.997
bsolo 3.2 (complete)3463067SAT207 1798.06 1798.01
Sat4j Resolution 2.3.0 (complete)3458802SAT (TO)207 1800.12 1796.86
Sat4j Res//CP 2.3.0 (complete)3454418SAT (TO)207 1800.62 971.637
clasp 2.0-R4191 (complete)3468174SAT (TO)210 1800.1 1800.02
Sat4j CuttingPlanes 2.3.0 (complete)3456610SAT (TO)210 1800.23 1793.79
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466526? (TO)209 1800.06 1800.02
MinisatID 2.4.8 [DEPRECATED] (complete)3464727? (TO)209 1800.1 1800.03
MinisatID 2.5.2 (fixed) (complete)3490600? (TO)211 1800.05 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3496839? (TO)212 1800.1 1800.01
borg pb-opt-11.04.03 (complete)3481801? (MO) 202.11 198.853
wbo 1.6 (complete)3460855? (TO) 1800.13 1800.15

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 207
Solution found:
-x498 x497 x496 -x495 x494 -x493 -x492 x491 x490 -x489 x488 -x487 x486 -x485 -x484 x483 x482 -x481 -x480 x479 x478 -x477 x476 -x475 -x474
x473 x472 -x471 x470 -x469 -x468 x467 x466 -x465 x464 -x463 x462 -x461 -x460 x459 x458 -x457 -x456 x455 x454 -x453 x452 -x451 -x450 x449
x448 -x447 x446 -x445 -x444 x443 x442 -x441 x440 -x439 -x438 x437 x436 -x435 x434 -x433 x432 -x431 -x430 x429 x428 -x427 x426 -x425 x424
-x423 -x422 x421 -x420 x419 x418 -x417 x416 -x415 -x414 x413 x412 -x411 x410 -x409 -x408 x407 x406 -x405 x404 -x403 -x402 x401 x400 -x399
x398 -x397 -x396 x395 x394 -x393 x392 -x391 -x390 x389 x388 -x387 x386 -x385 -x384 x383 x382 -x381 -x380 x379 -x378 x377 -x376 x375 -x374
x373 -x372 x371 -x370 x369 -x368 x367 -x366 x365 -x364 x363 -x362 x361 -x360 x359 -x358 x357 -x356 x355 -x354 x353 -x352 x351 -x350 x349
-x348 x347 -x346 x345 -x344 x343 -x342 x341 -x340 x339 -x338 x337 x336 -x335 -x334 x333 -x332 x331 -x330 x329 -x328 x327 -x326 x325 -x324
x323 -x322 x321 -x320 x319 -x318 x317 -x316 x315 -x314 x313 -x312 x311 -x310 x309 -x308 x307 -x306 x305 -x304 x303 -x302 x301 -x300 x299
-x298 x297 -x296 x295 -x294 x293 -x292 x291 -x290 x289 -x288 x287 -x286 x285 -x284 x283 -x282 x281 -x280 x279 -x278 x277 -x276 x275 -x274
x273 -x272 x271 -x270 x269 -x268 x267 -x266 x265 -x264 x263 x262 -x261 -x260 x259 -x258 x257 -x256 x255 -x254 x253 -x252 x251 x250 -x249
-x248 -x247 -x246 x245 x244 -x243 -x242 x241 -x240 x239 -x238 -x237 -x236 x235 -x234 -x233 -x232 x231 -x230 -x229 -x228 x227 -x226 x225
-x224 x223 -x222 x221 -x220 -x219 -x218 x217 -x216 x215 -x214 x213 -x212 x211 -x210 x209 -x208 x207 -x206 -x205 -x204 x203 x202 -x201 -x200
x199 -x198 x197 -x196 x195 -x194 x193 -x192 -x191 -x190 x189 -x188 x187 -x186 x185 -x184 x183 -x182 -x181 -x180 -x179 -x178 x177 -x176 x175
-x174 -x173 -x172 -x171 -x170 x169 -x168 x167 -x166 x165 -x164 x163 -x162 -x161 -x160 x159 -x158 x157 -x156 x155 -x154 x153 -x152 x151 -x150
x149 -x148 x147 -x146 x145 -x144 x143 -x142 x141 -x140 x139 -x138 x137 -x136 x135 x134 -x133 -x132 x131 -x130 -x129 -x128 -x127 -x126 x125
-x124 x123 -x122 -x121 -x120 -x119 -x118 x117 -x116 -x115 -x114 x113 -x112 -x111 -x110 x109 -x108 x107 -x106 -x105 -x104 x103 -x102 -x101
-x100 -x99 -x98 x97 -x96 -x95 -x94 x93 -x92 x91 -x90 -x89 -x88 -x87 -x86 x85 -x84 -x83 -x82 x81 -x80 x79 -x78 -x77 -x76 x75 x74 -x73 -x72
x71 x70 -x69 -x68 -x67 -x66 x65 -x64 -x63 -x62 x61 -x60 x59 -x58 -x57 -x56 x55 -x54 -x53 -x52 x51 -x50 -x49 -x48 -x47 -x46 x45 -x44 -x43
-x42 x41 -x40 -x39 -x38 x37 -x36 -x35 -x34 x33 -x32 -x31 -x30 x29 -x28 -x27 -x26 x25 -x24 -x23 -x22 x21 -x20 x19 -x18 -x17 -x16 -x15 -x14
x13 -x12 x11 -x10 -x9 -x8 x7 x6 -x5 -x4 -x3 -x2 x1