PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark302
Best CPU time to get the best result obtained on this benchmark149.887
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 302
Optimality of the best value was proved NO
Number of variables1020
Total number of constraints3575
Number of constraints which are clauses3575
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint10
Number of terms in the objective function 1020
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 1020
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 1020
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451088OPT302 147.917 147.915
SCIP spx 2 2011-06-10 (fixed) (complete)3485566OPT302 149.887 149.883
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452748OPT302 161.939 161.949
SCIP spx E_2 2011-06-10 (fixed) (complete)3489008OPT302 167.248 167.246
pwbo 1.1 (complete)3500262SAT (TO)309 1800.09 900.049
bsolo 3.2 (complete)3463196SAT315 1798.01 1797.97
Sat4j Resolution 2.3.0 (complete)3459056SAT (TO)315 1800.09 1796.66
Sat4j CuttingPlanes 2.3.0 (complete)3456864SAT (TO)315 1800.19 1797.87
Sat4j Res//CP 2.3.0 (complete)3454672SAT (TO)315 1800.32 925.48
clasp 2.0-R4191 (complete)3468303SAT (TO)439 1800.06 1800.02
MinisatID 2.4.8 [DEPRECATED] (complete)3464856? (TO)369 1800.08 1800.03
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466780? (TO)369 1800.1 1800.12
MinisatID 2.5.2-gmp (fixed) (complete)3497093? (TO)392 1800.05 1802.01
MinisatID 2.5.2 (fixed) (complete)3490729? (TO)392 1800.06 1800.02
borg pb-opt-11.04.03 (complete)3481920? (MO) 146.53 144.178
wbo 1.6 (complete)3460984? (TO) 1800.13 1800.06

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 302
Solution found:
-x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003 -x1002 x1001
-x1000 -x999 -x998 -x997 -x996 -x995 -x994 -x993 -x992 -x991 -x990 -x989 -x988 -x987 x986 -x985 -x984 -x983 -x982 x981 -x980 -x979 -x978
-x977 -x976 -x975 -x974 -x973 -x972 -x971 -x970 -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 x961 -x960 -x959 -x958 -x957 -x956 -x955
-x954 -x953 -x952 -x951 -x950 -x949 -x948 -x947 x946 -x945 -x944 -x943 -x942 x941 -x940 -x939 -x938 -x937 -x936 -x935 -x934 -x933 -x932
-x931 -x930 -x929 -x928 -x927 x926 -x925 -x924 -x923 -x922 x921 x920 -x919 x918 -x917 x916 -x915 x914 -x913 x912 -x911 x910 -x909 x908 -x907
-x906 x905 x904 -x903 x902 -x901 -x900 -x899 -x898 -x897 -x896 -x895 -x894 -x893 -x892 -x891 -x890 -x889 -x888 -x887 x886 -x885 -x884 -x883
-x882 x881 -x880 -x879 -x878 -x877 -x876 -x875 -x874 -x873 -x872 -x871 -x870 -x869 -x868 -x867 x866 -x865 -x864 -x863 -x862 x861 -x860 -x859
-x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851 -x850 -x849 -x848 -x847 x846 -x845 -x844 -x843 -x842 x841 -x840 -x839 -x838 -x837 -x836
-x835 -x834 -x833 -x832 -x831 -x830 -x829 -x828 -x827 -x826 -x825 -x824 -x823 -x822 x821 -x820 -x819 -x818 -x817 -x816 -x815 -x814 -x813
-x812 -x811 -x810 -x809 -x808 -x807 x806 -x805 -x804 -x803 -x802 x801 -x800 -x799 -x798 -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790
-x789 -x788 -x787 -x786 -x785 -x784 -x783 -x782 x781 -x780 -x779 -x778 -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 -x768 -x767
x766 -x765 -x764 -x763 -x762 x761 x760 -x759 x758 -x757 x756 -x755 x754 -x753 x752 -x751 x750 -x749 x748 -x747 -x746 x745 x744 -x743 x742
-x741 -x740 -x739 -x738 -x737 -x736 -x735 -x734 -x733 -x732 -x731 -x730 -x729 -x728 -x727 x726 -x725 -x724 -x723 -x722 x721 x720 -x719 x718
-x717 x716 -x715 x714 -x713 x712 -x711 x710 -x709 x708 -x707 -x706 x705 x704 -x703 x702 -x701 x700 -x699 x698 -x697 x696 -x695 x694 -x693
x692 -x691 x690 -x689 x688 -x687 -x686 x685 x684 -x683 x682 -x681 x680 -x679 x678 -x677 x676 -x675 x674 -x673 x672 -x671 x670 -x669 x668
-x667 -x666 x665 x664 -x663 x662 -x661 -x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 x647 -x646 -x645 -x644
-x643 -x642 -x641 x640 -x639 x638 -x637 x636 -x635 x634 -x633 x632 -x631 x630 -x629 x628 -x627 -x626 x625 x624 -x623 x622 -x621 x620 -x619
x618 -x617 x616 -x615 x614 -x613 x612 -x611 x610 -x609 x608 -x607 -x606 x605 x604 -x603 x602 -x601 -x600 -x599 -x598 -x597 -x596 -x595 -x594
-x593 -x592 -x591 -x590 -x589 -x588 -x587 x586 -x585 -x584 -x583 -x582 x581 -x580 -x579 -x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571
-x570 -x569 -x568 -x567 x566 -x565 -x564 -x563 -x562 x561 x560 -x559 x558 -x557 x556 -x555 x554 -x553 x552 -x551 x550 -x549 x548 -x547 -x546
x545 x544 -x543 x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 -x531 -x530 -x529 -x528 -x527 x526 -x525 -x524 -x523 -x522
x521 -x520 -x519 -x518 -x517 -x516 -x515 -x514 -x513 -x512 -x511 -x510 -x509 -x508 -x507 -x506 -x505 -x504 -x503 -x502 x501 -x500 -x499
-x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 x486 -x485 -x484 -x483 -x482 x481 -x480 -x479 -x478 -x477 -x476
-x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 x466 -x465 -x464 x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453
-x452 -x451 -x450 -x449 -x448 x447 -x446 -x445 -x444 -x443 -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430
-x429 -x428 -x427 x426 -x425 -x424 -x423 -x422 x421 x420 -x419 x418 -x417 x416 -x415 x414 -x413 x412 -x411 x410 -x409 x408 -x407 -x406 x405
x404 -x403 x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 -x383 -x382 x381
-x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 x366 -x365 -x364 -x363 -x362 x361 x360 -x359 x358 -x357
x356 -x355 x354 -x353 x352 -x351 x350 -x349 x348 -x347 -x346 x345 x344 -x343 x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333
-x332 -x331 -x330 -x329 -x328 -x327 x326 -x325 -x324 -x323 -x322 x321 -x320 x319 -x318 x317 -x316 x315 -x314 x313 -x312 x311 -x310 x309
-x308 x307 x306 -x305 -x304 x303 -x302 x301 -x300 x299 -x298 x297 -x296 x295 -x294 x293 -x292 x291 -x290 x289 -x288 x287 -x286 x285 -x284
x283 -x282 x281 -x280 x279 -x278 x277 -x276 x275 x274 -x273 -x272 x271 -x270 x269 -x268 x267 -x266 x265 -x264 x263 -x262 x261 -x260 x259
-x258 x257 -x256 x255 -x254 x253 -x252 x251 -x250 x249 -x248 x247 -x246 x245 -x244 x243 x242 -x241 -x240 x239 -x238 x237 -x236 x235 -x234
x233 -x232 x231 -x230 x229 -x228 x227 -x226 x225 -x224 x223 -x222 x221 -x220 x219 -x218 x217 -x216 x215 -x214 x213 -x212 x211 x210 -x209
-x208 x207 -x206 x205 -x204 x203 -x202 x201 -x200 x199 -x198 x197 -x196 x195 -x194 x193 -x192 x191 -x190 x189 -x188 x187 -x186 x185 -x184
x183 -x182 x181 -x180 x179 x178 -x177 -x176 x175 -x174 x173 -x172 x171 -x170 x169 -x168 x167 -x166 x165 -x164 x163 -x162 x161 -x160 x159
-x158 x157 -x156 x155 -x154 x153 -x152 x151 -x150 x149 -x148 x147 x146 -x145 -x144 x143 -x142 x141 -x140 x139 -x138 x137 -x136 x135 -x134
x133 -x132 x131 -x130 x129 -x128 x127 -x126 x125 -x124 x123 -x122 x121 -x120 x119 -x118 x117 -x116 x115 x114 -x113 -x112 x111 -x110 x109
-x108 x107 -x106 x105 -x104 x103 -x102 x101 -x100 x99 -x98 x97 -x96 x95 -x94 x93 -x92 x91 x90 -x89 -x88 x87 -x86 x85 -x84 x83 -x82 x81 -x80
x79 -x78 x77 -x76 x75 -x74 x73 -x72 x71 -x70 x69 -x68 x67 -x66 x65 -x64 x63 -x62 x61 -x60 x59 -x58 x57 -x56 x55 -x54 x53 -x52 x51 x50 -x49
-x48 x47 -x46 x45 -x44 x43 -x42 x41 -x40 x39 -x38 x37 -x36 x35 -x34 x33 -x32 x31 -x30 x29 -x28 x27 -x26 x25 -x24 x23 -x22 x21 -x20 x19 x18
-x17 -x16 x15 -x14 x13 -x12 x11 -x10 x9 -x8 x7 -x6 x5 -x4 x3 -x2 x1