PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark191
Best CPU time to get the best result obtained on this benchmark30.7263
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 191
Optimality of the best value was proved YES
Number of variables456
Total number of constraints1602
Number of constraints which are clauses1602
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint32
Number of terms in the objective function 456
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 456
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 456
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
borg pb-opt-11.04.03 (complete)3482050OPT191 29.8915 29.9631
SCIP spx 2 2011-06-10 (fixed) (complete)3486022OPT191 30.7263 30.7253
SCIP spx E_2 2011-06-10 (fixed) (complete)3489464OPT191 30.8383 30.8383
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451544OPT191 30.8953 30.896
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453204OPT191 32.3011 32.3177
pwbo 1.1 (complete)3500259OPT191 236.686 118.354
bsolo 3.2 (complete)3463652OPT191 1510.66 1510.63
clasp 2.0-R4191 (complete)3468759SAT (TO)191 1800.05 1800.02
Sat4j Resolution 2.3.0 (complete)3459526SAT (TO)191 1800.13 1797.94
Sat4j Res//CP 2.3.0 (complete)3455142SAT (TO)191 1800.22 963.892
Sat4j CuttingPlanes 2.3.0 (complete)3457334SAT (TO)191 1800.25 1795.52
MinisatID 2.5.2 (fixed) (complete)3491185? (TO)191 1800.03 1800.02
MinisatID 2.4.8 [DEPRECATED] (complete)3465312? (TO)191 1800.08 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467250? (TO)191 1800.09 1802.02
MinisatID 2.5.2-gmp (fixed) (complete)3497563? (TO)192 1800.06 1800.01
wbo 1.6 (complete)3461440? (TO) 1800.14 1800.05

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 191
Solution found:
x1 -x2 x3 -x4 x5 -x6 x7 -x8 x9 -x10 x11 -x12 x13 -x14 x15 -x16 x17 -x18 x19 -x20 x21 -x22 x23 -x24 x25 -x26 x27 -x28 x29 -x30 x31 -x32 x33
-x34 x35 -x36 x37 -x38 x39 -x40 x41 -x42 x43 -x44 x45 -x46 x47 -x48 x49 -x50 x51 -x52 x53 -x54 x55 -x56 x57 -x58 x59 -x60 x61 -x62 x63 -x64
x65 -x66 x67 -x68 x69 -x70 x71 -x72 -x73 x74 x75 -x76 x77 -x78 x79 -x80 x81 -x82 x83 -x84 x85 -x86 x87 -x88 x89 -x90 -x91 x92 x93 -x94 x95
-x96 x97 -x98 x99 -x100 -x101 x102 x103 -x104 x105 -x106 x107 -x108 x109 -x110 x111 -x112 x113 -x114 x115 -x116 x117 -x118 x119 -x120 x121
-x122 x123 -x124 x125 -x126 x127 -x128 x129 -x130 -x131 -x132 -x133 -x134 x135 -x136 x137 -x138 x139 -x140 x141 -x142 -x143 x144 x145 -x146
-x147 -x148 x149 -x150 x151 -x152 -x153 -x154 x155 -x156 x157 -x158 x159 -x160 -x161 -x162 x163 -x164 -x165 -x166 x167 -x168 -x169 -x170
x171 -x172 x173 -x174 x175 -x176 x177 -x178 -x179 -x180 -x181 -x182 x183 -x184 x185 -x186 x187 -x188 -x189 -x190 x191 -x192 x193 -x194 -x195
-x196 -x197 -x198 x199 -x200 x201 -x202 x203 -x204 x205 -x206 -x207 -x208 x209 -x210 -x211 -x212 -x213 -x214 x215 -x216 x217 -x218 x219
-x220 x221 -x222 x223 -x224 x225 -x226 x227 -x228 x229 -x230 -x231 -x232 x233 -x234 x235 -x236 -x237 -x238 x239 -x240 x241 -x242 x243 -x244
-x245 -x246 x247 -x248 -x249 x250 x251 -x252 -x253 -x254 x255 -x256 -x257 -x258 x259 -x260 -x261 -x262 x263 -x264 x265 -x266 x267 -x268 x269
-x270 x271 -x272 x273 -x274 -x275 -x276 x277 -x278 x279 -x280 x281 -x282 -x283 -x284 x285 -x286 x287 -x288 x289 -x290 x291 -x292 x293 -x294
-x295 x296 x297 -x298 x299 -x300 x301 -x302 -x303 -x304 -x305 -x306 x307 -x308 x309 -x310 -x311 -x312 -x313 -x314 x315 -x316 x317 -x318
-x319 -x320 -x321 -x322 x323 -x324 -x325 -x326 x327 -x328 x329 -x330 -x331 -x332 x333 -x334 x335 -x336 x337 -x338 -x339 -x340 x341 -x342
x343 -x344 x345 -x346 -x347 -x348 -x349 -x350 x351 -x352 x353 -x354 x355 -x356 -x357 -x358 x359 -x360 x361 -x362 x363 -x364 x365 -x366 -x367
-x368 x369 -x370 -x371 x372 x373 -x374 -x375 -x376 x377 -x378 x379 -x380 -x381 x382 x383 -x384 -x385 x386 x387 -x388 -x389 x390 x391 -x392
-x393 x394 -x395 x396 x397 -x398 -x399 x400 -x401 x402 x403 -x404 -x405 x406 -x407 x408 x409 -x410 -x411 x412 -x413 x414 -x415 x416 -x417
x418 x419 -x420 x421 -x422 -x423 x424 -x425 x426 x427 -x428 -x429 x430 -x431 x432 x433 -x434 -x435 x436 -x437 x438 -x439 x440 x441 -x442
-x443 x444 -x445 x446 -x447 x448 x449 -x450 x451 -x452 -x453 x454 -x455 x456