PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark343
Best CPU time to get the best result obtained on this benchmark1797.11
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 343
Optimality of the best value was proved NO
Number of variables1040
Total number of constraints3656
Number of constraints which are clauses3656
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint10
Number of terms in the objective function 1040
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 1040
Number of bits of the sum of numbers in the objective function 11
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 1040
Number of bits of the biggest sum of numbers11
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E_2 2011-06-10 (fixed) (complete)3488964SAT343 1797.11 1797.07
SCIP spx 2 2011-06-10 (fixed) (complete)3485522SAT343 1797.11 1797.07
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452704SAT (TO)343 1800.07 1800.03
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451044SAT (TO)343 1800.08 1800.02
pwbo 1.1 (complete)3500214SAT (TO)363 1800.25 900.162
bsolo 3.2 (complete)3463152SAT383 1798 1797.96
Sat4j Resolution 2.3.0 (complete)3458926SAT (TO)405 1800.07 1796.75
Sat4j Res//CP 2.3.0 (complete)3454542SAT (TO)418 1800.3 955.807
Sat4j CuttingPlanes 2.3.0 (complete)3456734SAT (TO)430 1800.2 1795.78
clasp 2.0-R4191 (complete)3468259SAT (TO)461 1800.08 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466650? (TO)389 1800.05 1800.01
MinisatID 2.4.8 [DEPRECATED] (complete)3464812? (TO)389 1800.07 1800.02
MinisatID 2.5.2 (fixed) (complete)3490685? (TO)402 1800.06 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3496963? (TO)443 1800.09 1800.01
borg pb-opt-11.04.03 (complete)3481876? (MO) 146.19 145.285
wbo 1.6 (complete)3460940? (TO) 1800.14 1800.17

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 343
Solution found:
x1040 -x1039 x1038 -x1037 x1036 -x1035 -x1034 x1033 x1032 -x1031 x1030 -x1029 x1028 -x1027 x1026 -x1025 x1024 -x1023 x1022 -x1021 x1020
-x1019 x1018 -x1017 x1016 -x1015 -x1014 -x1013 x1012 -x1011 x1010 -x1009 x1008 -x1007 x1006 -x1005 -x1004 x1003 x1002 -x1001 -x1000 -x999
-x998 -x997 -x996 -x995 x994 -x993 -x992 -x991 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 x981 x980 -x979 x978 -x977 x976 -x975
x974 -x973 x972 -x971 x970 -x969 x968 -x967 x966 -x965 -x964 x963 x962 -x961 -x960 -x959 -x958 -x957 -x956 -x955 x954 -x953 -x952 -x951
-x950 -x949 -x948 -x947 -x946 -x945 -x944 x943 -x942 -x941 x940 -x939 x938 -x937 x936 -x935 x934 -x933 x932 -x931 x930 -x929 x928 -x927 x926
-x925 -x924 x923 x922 -x921 -x920 -x919 -x918 -x917 -x916 -x915 x914 -x913 -x912 -x911 -x910 -x909 -x908 -x907 -x906 -x905 x904 -x903 -x902
x901 x900 -x899 x898 -x897 x896 -x895 x894 -x893 x892 -x891 x890 -x889 x888 -x887 x886 -x885 -x884 x883 x882 -x881 -x880 -x879 -x878 -x877
-x876 -x875 -x874 -x873 -x872 -x871 -x870 -x869 -x868 -x867 -x866 -x865 x864 -x863 -x862 x861 -x860 -x859 -x858 -x857 -x856 -x855 x854 -x853
-x852 -x851 -x850 -x849 -x848 x847 -x846 -x845 -x844 -x843 -x842 -x841 -x840 -x839 -x838 -x837 -x836 -x835 -x834 -x833 -x832 -x831 -x830
-x829 -x828 -x827 -x826 -x825 x824 -x823 -x822 x821 x820 -x819 x818 -x817 x816 -x815 -x814 x813 x812 -x811 x810 -x809 x808 -x807 x806 -x805
x804 -x803 x802 -x801 -x800 -x799 -x798 -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785 -x784 x783 -x782 -x781
-x780 -x779 -x778 -x777 -x776 -x775 x774 -x773 -x772 x771 -x770 -x769 -x768 -x767 -x766 -x765 x764 -x763 -x762 -x761 x760 -x759 x758 -x757
x756 -x755 x754 -x753 x752 -x751 x750 -x749 x748 -x747 x746 -x745 -x744 x743 x742 -x741 -x740 -x739 -x738 -x737 -x736 -x735 x734 -x733 -x732
-x731 -x730 -x729 -x728 -x727 -x726 -x725 x724 -x723 -x722 x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709
-x708 -x707 -x706 -x705 x704 -x703 -x702 x701 -x700 -x699 -x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x690 -x689 -x688 -x687 -x686
-x685 x684 -x683 -x682 x681 x680 -x679 x678 -x677 x676 -x675 -x674 -x673 x672 -x671 x670 -x669 x668 -x667 x666 -x665 -x664 x663 x662 -x661
-x660 -x659 -x658 -x657 -x656 -x655 x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 -x645 x644 -x643 -x642 x641 x640 -x639 x638 -x637
x636 -x635 x634 -x633 x632 -x631 x630 -x629 x628 -x627 x626 -x625 -x624 x623 x622 -x621 -x620 -x619 -x618 -x617 -x616 -x615 x614 -x613 -x612
-x611 -x610 -x609 -x608 -x607 -x606 -x605 x604 -x603 -x602 x601 -x600 -x599 -x598 -x597 -x596 -x595 x594 -x593 -x592 -x591 -x590 -x589 -x588
-x587 -x586 -x585 x584 -x583 -x582 x581 -x580 -x579 -x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 x564
-x563 -x562 x561 -x560 -x559 -x558 -x557 -x556 -x555 x554 -x553 -x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 x544 -x543 -x542 x541 -x540
-x539 -x538 -x537 -x536 -x535 x534 -x533 -x532 -x531 -x530 -x529 -x528 -x527 -x526 -x525 x524 -x523 -x522 x521 -x520 -x519 -x518 -x517 -x516
-x515 x514 -x513 -x512 -x511 -x510 -x509 -x508 -x507 -x506 -x505 x504 -x503 -x502 x501 x500 -x499 x498 -x497 x496 -x495 -x494 x493 x492
-x491 x490 -x489 x488 -x487 x486 -x485 x484 -x483 x482 -x481 x480 -x479 x478 -x477 x476 -x475 x474 -x473 x472 -x471 x470 -x469 x468 -x467
x466 -x465 -x464 x463 x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 x444 -x443
-x442 x441 x440 -x439 x438 -x437 x436 -x435 x434 -x433 x432 -x431 x430 -x429 x428 -x427 x426 -x425 -x424 x423 x422 -x421 -x420 -x419 -x418
-x417 -x416 -x415 x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 x404 -x403 -x402 x401 x400 -x399 x398 -x397 x396 -x395 x394
-x393 x392 -x391 x390 -x389 x388 -x387 x386 -x385 -x384 x383 x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 x374 -x373 -x372 -x371 -x370
-x369 -x368 -x367 -x366 -x365 x364 -x363 -x362 x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 -x350 -x349 -x348 -x347
-x346 -x345 -x344 x343 -x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324
-x323 -x322 x321 -x320 x319 x318 -x317 -x316 x315 -x314 x313 -x312 x311 -x310 x309 -x308 x307 -x306 x305 -x304 x303 -x302 x301 -x300 x299
-x298 x297 -x296 x295 -x294 x293 -x292 x291 -x290 x289 -x288 x287 x286 -x285 -x284 x283 -x282 x281 -x280 x279 -x278 x277 -x276 x275 -x274
x273 -x272 x271 -x270 x269 -x268 x267 -x266 x265 -x264 x263 -x262 x261 -x260 x259 -x258 x257 -x256 x255 x254 -x253 -x252 x251 -x250 x249
-x248 x247 -x246 x245 -x244 x243 -x242 x241 -x240 x239 -x238 x237 -x236 x235 -x234 x233 -x232 x231 -x230 x229 -x228 x227 -x226 x225 -x224
x223 -x222 x221 -x220 x219 -x218 x217 -x216 x215 -x214 x213 -x212 x211 x210 -x209 -x208 x207 -x206 x205 x204 -x203 -x202 x201 -x200 x199
-x198 x197 -x196 x195 -x194 x193 -x192 x191 x190 -x189 -x188 x187 -x186 x185 -x184 x183 -x182 x181 -x180 x179 -x178 x177 -x176 x175 -x174
x173 -x172 x171 -x170 x169 -x168 x167 -x166 x165 -x164 x163 -x162 x161 -x160 x159 x158 -x157 -x156 x155 -x154 x153 -x152 x151 -x150 x149
-x148 x147 -x146 x145 -x144 x143 -x142 x141 -x140 x139 -x138 x137 -x136 x135 -x134 x133 -x132 x131 -x130 x129 -x128 x127 x126 -x125 -x124
x123 -x122 x121 -x120 x119 -x118 x117 -x116 x115 -x114 x113 -x112 x111 -x110 x109 -x108 x107 -x106 x105 -x104 x103 -x102 x101 -x100 x99 -x98
x97 -x96 x95 x94 -x93 -x92 x91 -x90 x89 -x88 x87 -x86 x85 -x84 x83 -x82 x81 -x80 x79 -x78 x77 -x76 x75 -x74 x73 -x72 x71 -x70 x69 -x68 x67
-x66 x65 -x64 x63 -x62 x61 -x60 x59 -x58 x57 -x56 x55 -x54 x53 -x52 x51 x50 -x49 -x48 x47 -x46 x45 -x44 x43 -x42 x41 -x40 x39 x38 -x37 -x36
x35 -x34 x33 -x32 x31 x30 -x29 -x28 x27 -x26 x25 -x24 x23 -x22 x21 -x20 x19 -x18 x17 -x16 x15 -x14 x13 -x12 x11 -x10 x9 -x8 x7 -x6 x5 -x4 x3
-x2 x1