PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark64
Best CPU time to get the best result obtained on this benchmark0.054991
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 64
Optimality of the best value was proved YES
Number of variables672
Total number of constraints2030
Number of constraints which are clauses2006
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint28
Number of terms in the objective function 672
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 672
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 672
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.6 (complete)3461365OPT64 0.054991 0.055342
pwbo 1.1 (complete)3500146OPT64 0.117981 0.066741
SCIP spx 2 2011-06-10 (fixed) (complete)3485947OPT64 0.19197 0.192695
SCIP spx E_2 2011-06-10 (fixed) (complete)3489389OPT64 0.19397 0.193954
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451469OPT64 0.197969 0.200539
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453129OPT64 0.199968 0.200464
borg pb-opt-11.04.03 (complete)3481975OPT64 0.659899 0.745842
Sat4j Resolution 2.3.0 (complete)3459451OPT64 7.59784 6.95617
clasp 2.0-R4191 (complete)3468684OPT64 8.69668 8.69904
bsolo 3.2 (complete)3463577OPT64 11.7002 11.7014
Sat4j Res//CP 2.3.0 (complete)3455067OPT64 16.6095 9.42671
Sat4j CuttingPlanes 2.3.0 (complete)3457259OPT64 26.107 24.6993
MinisatID 2.5.2 (fixed) (complete)3491110OPT64 28.2947 28.2962
MinisatID 2.5.2-gmp (fixed) (complete)3497488OPT64 169.037 169.034
MinisatID 2.4.8 [DEPRECATED] (complete)3465237OPT64 915.093 915.119
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467175? (TO)64 1800.12 1800.12

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 64
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 x74 x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 x100 x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 x109 -x110 -x111 -x112
-x113 -x114 x115 -x116 -x117 -x118 x119 -x120 -x121 x122 x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 x136
-x137 -x138 -x139 x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 x158 -x159
-x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 x173 -x174 -x175 -x176 x177 -x178 -x179 -x180 -x181 x182 -x183
-x184 -x185 -x186 x187 -x188 -x189 -x190 -x191 x192 -x193 -x194 -x195 -x196 -x197 -x198 x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207
-x208 x209 -x210 -x211 -x212 -x213 x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 x230 -x231
-x232 -x233 x234 -x235 -x236 -x237 x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 x253 -x254 -x255
-x256 x257 -x258 -x259 -x260 x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 x271 x272 x273 -x274 -x275 -x276 -x277 -x278 -x279
-x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301 -x302
-x303 -x304 -x305 -x306 -x307 -x308 x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 x319 x320 x321 -x322 -x323 -x324 -x325 -x326
-x327 x328 -x329 -x330 -x331 x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349
-x350 -x351 -x352 x353 -x354 -x355 -x356 x357 -x358 -x359 -x360 -x361 x362 x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373
-x374 -x375 x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396
-x397 -x398 -x399 -x400 -x401 x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419
x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 x428 -x429 -x430 -x431 x432 -x433 -x434 -x435 x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443
-x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 x466
x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 x475 -x476 -x477 -x478 x479 -x480 -x481 -x482 -x483 -x484 x485 x486 -x487 -x488 -x489 -x490
-x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513
-x514 x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 x526 -x527 -x528 x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537
-x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560
-x561 -x562 -x563 -x564 -x565 -x566 x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583
-x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 x600 -x601 -x602 -x603 -x604 -x605 -x606
-x607 -x608 -x609 -x610 -x611 x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629
-x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 x642 -x643 -x644 -x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652
-x653 -x654 -x655 -x656 -x657 -x658 -x659 x660 -x661 -x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671 -x672