PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark62
Best CPU time to get the best result obtained on this benchmark0.052991
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 62
Optimality of the best value was proved YES
Number of variables672
Total number of constraints2028
Number of constraints which are clauses2004
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint28
Number of terms in the objective function 672
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 672
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 672
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.6 (complete)3461361OPT62 0.052991 0.052997
SCIP spx E_2 2011-06-10 (fixed) (complete)3489385OPT62 0.090986 0.0911889
SCIP spx 2 2011-06-10 (fixed) (complete)3485943OPT62 0.091985 0.092426
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451465OPT62 0.096984 0.0966849
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453125OPT62 0.097984 0.098556
pwbo 1.1 (complete)3500142OPT62 0.12398 0.0690069
bsolo 3.2 (complete)3463573OPT62 0.167973 0.169471
borg pb-opt-11.04.03 (complete)3481971OPT62 0.595908 0.685619
clasp 2.0-R4191 (complete)3468680OPT62 262.394 262.386
Sat4j Resolution 2.3.0 (complete)3459447OPT62 383.682 381.824
Sat4j Res//CP 2.3.0 (complete)3455063OPT62 650.129 376.17
Sat4j CuttingPlanes 2.3.0 (complete)3457255OPT62 879.696 874.697
MinisatID 2.5.2-gmp (fixed) (complete)3497484? (TO)62 1800.05 1800.71
MinisatID 2.5.2 (fixed) (complete)3491106? (TO)62 1800.06 1800.01
MinisatID 2.4.8 [DEPRECATED] (complete)3465233? (TO)64 1800.06 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467171? (TO)68 1800.08 1800.02

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 62
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 x10 x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 x34 x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 x43 -x44 -x45 -x46 x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 x79 x80 x81 -x82 -x83 -x84 -x85 -x86 -x87
-x88 x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 x100 x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 x111 -x112 x113
-x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136
-x137 -x138 x139 -x140 -x141 x142 -x143 -x144 -x145 -x146 -x147 x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159 -x160
-x161 x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 x176 -x177 -x178 -x179 -x180 -x181 -x182 -x183
-x184 -x185 -x186 -x187 -x188 -x189 x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 x204 -x205 -x206 x207
-x208 -x209 -x210 x211 -x212 -x213 -x214 x215 -x216 -x217 -x218 -x219 -x220 x221 x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230 -x231
-x232 -x233 x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 -x256 -x257 -x258 -x259 x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 x274 x275 -x276 -x277 -x278
-x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 x287 -x288 -x289 x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301
-x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324
-x325 x326 -x327 -x328 -x329 x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347
-x348 x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 x362 x363 x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371
-x372 -x373 x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 x391 -x392 -x393 -x394
-x395 -x396 x397 -x398 -x399 -x400 x401 -x402 -x403 -x404 -x405 x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 x414 -x415 -x416 -x417 -x418
-x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 x428 -x429 -x430 -x431 x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441
-x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464
-x465 -x466 -x467 x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487
-x488 x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510
-x511 -x512 x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 -x528 x529 -x530 -x531 -x532 -x533
-x534 -x535 -x536 -x537 -x538 -x539 -x540 x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556
-x557 -x558 -x559 -x560 -x561 -x562 -x563 x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 x577 -x578 -x579
-x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602
-x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625
-x626 x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648
-x649 -x650 x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671