PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark60
Best CPU time to get the best result obtained on this benchmark0.051992
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 60
Optimality of the best value was proved YES
Number of variables696
Total number of constraints2096
Number of constraints which are clauses2072
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint29
Number of terms in the objective function 696
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 696
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 696
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.6 (complete)3461360OPT60 0.051992 0.052355
pwbo 1.1 (complete)3500141OPT60 0.114982 0.062799
bsolo 3.2 (complete)3463572OPT60 0.333948 0.350157
SCIP spx 2 2011-06-10 (fixed) (complete)3485942OPT60 1.88471 1.88503
SCIP spx E_2 2011-06-10 (fixed) (complete)3489384OPT60 1.88671 1.88738
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451464OPT60 1.91271 1.91271
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453124OPT60 1.91571 1.91659
borg pb-opt-11.04.03 (complete)3481970OPT60 2.74458 3.08284
clasp 2.0-R4191 (complete)3468679OPT60 249.1 249.091
Sat4j Resolution 2.3.0 (complete)3459446OPT60 362.352 361.156
Sat4j CuttingPlanes 2.3.0 (complete)3457254OPT60 555.118 551.39
Sat4j Res//CP 2.3.0 (complete)3455062OPT60 754.067 439.376
MinisatID 2.5.2-gmp (fixed) (complete)3497483? (TO)60 1800.06 1800.01
MinisatID 2.5.2 (fixed) (complete)3491105? (TO)60 1800.06 1800.01
MinisatID 2.4.8 [DEPRECATED] (complete)3465232? (TO)64 1800.06 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467170? (TO)68 1800.09 1800.02

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 60
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 x65 -x66 -x67 -x68 x69 -x70 -x71 -x72 -x73 -x74 -x75 x76 x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 x87
-x88 x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 x100 -x101 -x102 -x103 -x104 -x105 -x106 x107 -x108 -x109 -x110 -x111 -x112 -x113
x114 -x115 -x116 -x117 x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 x126 -x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136 -x137
-x138 x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 x156 -x157 -x158 -x159 -x160
-x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 x176 -x177 -x178 -x179 -x180 -x181 -x182 -x183
-x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 x193 -x194 -x195 -x196 x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 x206 -x207
-x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 x218 x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230
-x231 x232 -x233 -x234 -x235 x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 x245 x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 x256 -x257 x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 x275 -x276 -x277 -x278
-x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 x301
-x302 -x303 -x304 x305 -x306 -x307 -x308 x309 -x310 -x311 -x312 -x313 x314 x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325
x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 x338 x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349
x350 -x351 -x352 -x353 x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 x368 -x369 -x370 -x371 -x372 -x373
-x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 x396
-x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419
-x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 x432 -x433 -x434 -x435 -x436 -x437 x438 -x439 -x440 -x441 -x442
-x443 -x444 -x445 -x446 -x447 x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465
-x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 x480 -x481 -x482 -x483 -x484 -x485 -x486 x487 -x488
-x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511
-x512 x513 x514 x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 x527 -x528 x529 -x530 -x531 -x532 -x533 -x534 -x535
-x536 -x537 -x538 -x539 -x540 x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558
x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 x577 -x578 -x579 -x580 -x581
-x582 -x583 -x584 -x585 -x586 -x587 -x588 x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 x604
-x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627
-x628 -x629 -x630 x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 x645 -x646 -x647 -x648 -x649 -x650
-x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 x670 -x671 -x672 -x673
-x674 -x675 -x676 -x677 -x678 -x679 -x680 -x681 -x682 -x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 -x691 -x692 -x693 x694 -x695 -x696