PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark60
Best CPU time to get the best result obtained on this benchmark0.05399
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 60
Optimality of the best value was proved YES
Number of variables720
Total number of constraints2168
Number of constraints which are clauses2144
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint30
Number of terms in the objective function 720
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 720
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 720
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.6 (complete)3461359OPT60 0.05399 0.0544929
pwbo 1.1 (complete)3500140OPT60 0.119981 0.0669521
SCIP spx 2 2011-06-10 (fixed) (complete)3485941OPT60 0.162975 0.163115
SCIP spx E_2 2011-06-10 (fixed) (complete)3489383OPT60 0.163974 0.164962
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451463OPT60 0.169973 0.169749
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453123OPT60 0.169973 0.170706
borg pb-opt-11.04.03 (complete)3481969OPT60 0.607907 0.738383
bsolo 3.2 (complete)3463571OPT60 11.9352 11.9359
Sat4j Resolution 2.3.0 (complete)3459445OPT60 103.879 102.983
clasp 2.0-R4191 (complete)3468678OPT60 139.608 139.612
Sat4j Res//CP 2.3.0 (complete)3455061OPT60 387.915 220.012
Sat4j CuttingPlanes 2.3.0 (complete)3457253OPT60 839.739 834.503
MinisatID 2.5.2 (fixed) (complete)3491104? (TO)60 1800.06 1800.01
MinisatID 2.5.2-gmp (fixed) (complete)3497482? (TO)60 1800.07 1800.01
MinisatID 2.4.8 [DEPRECATED] (complete)3465231? (TO)72 1800.06 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467169? (TO) 1800.07 1800.02

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 60
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 x36 -x37 -x38 -x39 x40 -x41 -x42 -x43 x44 -x45 -x46 -x47 x48 x49 x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 x73 x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87
-x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 x107 x108 -x109 -x110 -x111 -x112
-x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135
-x136 -x137 -x138 -x139 -x140 x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 x149 x150 x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159
-x160 -x161 x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181 -x182
-x183 -x184 -x185 x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 x201 -x202 -x203 -x204 -x205
-x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228
-x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 x238 -x239 -x240 x241 -x242 -x243 -x244 x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252
-x253 x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275
-x276 -x277 -x278 -x279 -x280 x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298
-x299 x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321
-x322 -x323 -x324 -x325 x326 -x327 -x328 -x329 x330 -x331 -x332 -x333 x334 -x335 -x336 -x337 -x338 -x339 x340 x341 -x342 -x343 -x344 -x345
-x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 x355 -x356 -x357 -x358 x359 -x360 -x361 -x362 -x363 -x364 -x365 x366 -x367 -x368 -x369
-x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392
-x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415
-x416 -x417 -x418 x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438
-x439 -x440 -x441 -x442 x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461
-x462 x463 x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484
-x485 -x486 -x487 x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 x502 -x503 -x504 -x505 -x506 -x507
-x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 x523 -x524 -x525 -x526 x527 -x528 -x529 -x530
-x531 -x532 -x533 x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 x544 -x545 -x546 x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554
-x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577
x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600
-x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623
-x624 -x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 x640 -x641 -x642 -x643 x644 -x645 -x646
-x647 -x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669
-x670 -x671 -x672 -x673 -x674 x675 -x676 -x677 -x678 -x679 -x680 -x681 -x682 -x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 -x691 -x692
-x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704 -x705 x706 -x707 -x708 -x709 -x710 -x711 -x712 -x713 -x714 -x715
-x716 -x717 -x718 -x719 -x720