PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark62
Best CPU time to get the best result obtained on this benchmark0.051992
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 62
Optimality of the best value was proved YES
Number of variables648
Total number of constraints1954
Number of constraints which are clauses1930
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint27
Number of terms in the objective function 648
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 648
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 648
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.6 (complete)3461358OPT62 0.051992 0.052615
pwbo 1.1 (complete)3500139OPT62 0.115981 0.062274
SCIP spx 2 2011-06-10 (fixed) (complete)3485940OPT62 0.230964 0.230988
SCIP spx E_2 2011-06-10 (fixed) (complete)3489382OPT62 0.231963 0.233145
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451462OPT62 0.237962 0.238286
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453122OPT62 0.238963 0.23985
borg pb-opt-11.04.03 (complete)3481968OPT62 0.760883 1.04729
clasp 2.0-R4191 (complete)3468677OPT62 58.928 58.927
Sat4j Resolution 2.3.0 (complete)3459444OPT62 77.6942 76.9205
bsolo 3.2 (complete)3463570OPT62 86.1919 86.195
Sat4j Res//CP 2.3.0 (complete)3455060OPT62 187.41 102.445
MinisatID 2.5.2 (fixed) (complete)3491103OPT62 1415.54 1415.5
Sat4j CuttingPlanes 2.3.0 (complete)3457252SAT (TO)62 1800.31 1791.81
MinisatID 2.5.2-gmp (fixed) (complete)3497481? (TO)62 1800.08 1802.01
MinisatID 2.4.8 [DEPRECATED] (complete)3465230? (TO) 1800.04 1800.01
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467168? (TO) 1800.1 1800.12

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 62
Solution found:
-x1 -x2 -x3 -x4 -x5 x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 x34 x35 -x36 -x37 -x38 x39 -x40 -x41 -x42 x43 -x44 -x45 -x46 x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 x63 -x64 -x65 -x66 x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 x84 -x85 -x86 -x87
-x88 -x89 -x90 -x91 x92 -x93 -x94 -x95 x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 x104 -x105 -x106 -x107 -x108 -x109 x110 -x111 -x112 -x113
x114 -x115 -x116 -x117 -x118 x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 x127 x128 -x129 -x130 -x131 -x132 x133 -x134 -x135 -x136 x137
-x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 x154 -x155 -x156 -x157 -x158 -x159 -x160
-x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 x178 -x179 -x180 -x181 -x182 -x183
-x184 x185 -x186 -x187 -x188 x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207
-x208 -x209 x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230
-x231 -x232 -x233 x234 -x235 -x236 -x237 x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 -x256 x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276 -x277
-x278 -x279 -x280 -x281 -x282 -x283 -x284 x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 x295 -x296 -x297 -x298 -x299 -x300
-x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323
-x324 -x325 -x326 -x327 x328 -x329 -x330 -x331 x332 -x333 -x334 -x335 x336 x337 x338 x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347
-x348 -x349 -x350 -x351 x352 -x353 -x354 -x355 x356 -x357 -x358 -x359 x360 x361 x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371
-x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 x389 -x390 -x391 -x392 -x393 -x394
-x395 -x396 -x397 x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417
-x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 x430 -x431 -x432 -x433 -x434 -x435 x436 x437 x438 -x439 -x440 -x441
-x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 x457 x458 -x459 -x460 -x461 x462 -x463 -x464 -x465
-x466 -x467 -x468 -x469 -x470 x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 x488
-x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511
-x512 -x513 -x514 -x515 -x516 -x517 x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 -x528 -x529 -x530 x531 -x532 -x533 -x534
-x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557
-x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 x573 -x574 -x575 -x576 -x577 -x578 x579 -x580
-x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603
-x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 x622 -x623 -x624 -x625 -x626
-x627 -x628 -x629 -x630 -x631 -x632 x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648