PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark64
Best CPU time to get the best result obtained on this benchmark0.052991
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 64
Optimality of the best value was proved YES
Number of variables648
Total number of constraints1952
Number of constraints which are clauses1928
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint27
Number of terms in the objective function 648
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 648
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 648
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.6 (complete)3461357OPT64 0.052991 0.055242
pwbo 1.1 (complete)3500138OPT64 0.117981 0.0629771
SCIP spx 2 2011-06-10 (fixed) (complete)3485939OPT64 0.619904 0.619924
SCIP spx E_2 2011-06-10 (fixed) (complete)3489381OPT64 0.626904 0.627179
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451461OPT64 0.636902 0.637092
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453121OPT64 0.639901 0.640938
borg pb-opt-11.04.03 (complete)3481967OPT64 1.04 1.47518
clasp 2.0-R4191 (complete)3468676OPT64 48.0697 48.0678
Sat4j Resolution 2.3.0 (complete)3459443OPT64 91.786 90.6843
bsolo 3.2 (complete)3463569OPT64 135.65 135.649
Sat4j Res//CP 2.3.0 (complete)3455059OPT64 249.397 139.385
MinisatID 2.5.2 (fixed) (complete)3491102OPT64 787.169 787.148
Sat4j CuttingPlanes 2.3.0 (complete)3457251OPT64 1328.75 1323.02
MinisatID 2.5.2-gmp (fixed) (complete)3497480? (TO)64 1800.05 1802.01
MinisatID 2.4.8 [DEPRECATED] (complete)3465229? (TO)72 1800.05 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467167? (TO)72 1800.07 1800.02

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 64
Solution found:
x1 x2 x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 x13 -x14 -x15 -x16 x17 -x18 -x19 -x20 x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30 x31
-x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 x55 -x56 -x57 -x58 x59
-x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 x70 -x71 -x72 -x73 -x74 -x75 x76 -x77 -x78 -x79 x80 -x81 -x82 -x83 -x84 x85 -x86 -x87 -x88
-x89 x90 -x91 -x92 -x93 -x94 x95 -x96 -x97 -x98 -x99 x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112 x113 -x114
-x115 -x116 x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136 -x137
-x138 -x139 -x140 -x141 -x142 x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 x155 x156 -x157 -x158 -x159 -x160 -x161
-x162 -x163 -x164 -x165 -x166 -x167 x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 x180 -x181 -x182 -x183 x184 -x185
-x186 -x187 x188 -x189 -x190 -x191 x192 -x193 x194 x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 x206 -x207 -x208 -x209
x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 x228 -x229 -x230 -x231 -x232
-x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 x247 x248 -x249 -x250 -x251 -x252 -x253 -x254 -x255
-x256 -x257 -x258 x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 x272 x273 -x274 -x275 -x276 -x277 -x278 -x279
-x280 -x281 -x282 -x283 x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301 -x302
-x303 -x304 -x305 x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325
-x326 -x327 -x328 -x329 -x330 x331 -x332 -x333 -x334 x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 x347 -x348 -x349
-x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 x358 -x359 -x360 x361 x362 -x363 -x364 -x365 x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373
-x374 x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 x388 x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397
-x398 -x399 -x400 -x401 -x402 x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420
-x421 -x422 -x423 x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443
-x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466
-x467 -x468 x469 -x470 -x471 -x472 x473 -x474 -x475 -x476 x477 -x478 -x479 -x480 x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490
-x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 x513
-x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536
x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 x557 -x558 -x559 -x560
-x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583
-x584 -x585 x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604 x605 -x606
-x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629
-x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648