PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark4822
Best CPU time to get the best result obtained on this benchmark1.35779
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 4822
Optimality of the best value was proved YES
Number of variables771
Total number of constraints1951
Number of constraints which are clauses1949
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints2
Minimum length of a constraint1
Maximum length of a constraint42
Number of terms in the objective function 771
Biggest coefficient in the objective function 61
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 33355
Number of bits of the sum of numbers in the objective function 16
Biggest number in a constraint 61
Number of bits of the biggest number in a constraint 6
Biggest sum of numbers in a constraint 33355
Number of bits of the biggest sum of numbers16
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx 2 2011-06-10 (fixed) (complete)3485511OPT4822 1.35779 1.35797
SCIP spx E_2 2011-06-10 (fixed) (complete)3488953OPT4822 1.36279 1.36293
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451033OPT4822 1.38679 1.38764
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452693OPT4822 1.39279 1.39433
borg pb-opt-11.04.03 (complete)3481865OPT4822 1.87871 1.95328
bsolo 3.2 (complete)3463141SAT5429 1798.13 1798.08
Sat4j CuttingPlanes 2.3.0 (complete)3456723SAT (TO)5811 1800.25 1793.11
Sat4j Resolution 2.3.0 (complete)3458915SAT (TO)6023 1800.08 1795.76
Sat4j Res//CP 2.3.0 (complete)3454531SAT (TO)6038 1800.76 1187.48
pwbo 1.1 (complete)3500133SAT (TO)6171 1800.07 900.026
clasp 2.0-R4191 (complete)3468248SAT (TO)7170 1800.03 1800.12
MinisatID 2.4.8 [DEPRECATED] (complete)3464801? (TO)7342 1800.06 1800.02
MinisatID 2.5.2 (fixed) (complete)3490674? (TO)7638 1800.07 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3496952? (TO)7656 1800.06 1802.01
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466639? (TO)7672 1800.05 1802.02
wbo 1.6 (complete)3460929? (TO) 1800.14 1800.15

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 4822
Solution found:
-x771 x770 -x769 -x768 -x767 -x766 -x765 -x764 -x763 -x762 x761 x760 -x759 -x758 x757 x756 x755 x754 x753 -x752 x751 x750 -x749 -x748 -x747
-x746 -x745 -x744 -x743 -x742 -x741 -x740 -x739 -x738 -x737 -x736 -x735 -x734 -x733 -x732 -x731 -x730 -x729 -x728 -x727 -x726 x725 -x724
-x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 x713 -x712 -x711 -x710 -x709 -x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701
-x700 -x699 -x698 -x697 x696 -x695 -x694 -x693 -x692 x691 -x690 -x689 -x688 -x687 -x686 -x685 -x684 -x683 -x682 -x681 x680 -x679 -x678 x677
-x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669 -x668 -x667 -x666 -x665 -x664 -x663 x662 -x661 -x660 -x659 -x658 x657 x656 -x655 -x654 -x653
-x652 -x651 -x650 -x649 -x648 -x647 -x646 x645 -x644 x643 -x642 -x641 -x640 -x639 -x638 -x637 -x636 -x635 x634 -x633 -x632 -x631 -x630 -x629
x628 -x627 -x626 -x625 -x624 -x623 -x622 -x621 -x620 -x619 -x618 -x617 -x616 x615 -x614 -x613 -x612 x611 -x610 -x609 -x608 -x607 -x606 -x605
-x604 -x603 -x602 -x601 -x600 -x599 -x598 -x597 -x596 -x595 -x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 x585 -x584 -x583 -x582
-x581 -x580 -x579 x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562 -x561 -x560 -x559
-x558 -x557 -x556 -x555 -x554 -x553 x552 x551 x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 x537 x536 -x535
-x534 -x533 x532 -x531 -x530 -x529 -x528 -x527 -x526 x525 x524 x523 x522 -x521 x520 x519 -x518 -x517 -x516 -x515 -x514 -x513 -x512 -x511
-x510 -x509 -x508 -x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488
-x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 x471 x470 -x469 -x468 -x467 -x466 x465 x464
-x463 -x462 -x461 x460 -x459 -x458 -x457 x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 x441 -x440
-x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417
-x416 -x415 -x414 -x413 -x412 -x411 x410 -x409 -x408 -x407 -x406 -x405 -x404 x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 x394 -x393
x392 -x391 -x390 -x389 -x388 -x387 -x386 x385 x384 x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369
-x368 -x367 -x366 -x365 -x364 -x363 -x362 x361 -x360 -x359 -x358 -x357 -x356 -x355 x354 -x353 -x352 x351 -x350 -x349 -x348 -x347 -x346 -x345
-x344 -x343 -x342 -x341 -x340 -x339 -x338 x337 -x336 -x335 x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322
-x321 -x320 -x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 x306 -x305 x304 x303 -x302 x301 x300 -x299 -x298
-x297 x296 x295 x294 x293 -x292 x291 x290 x289 -x288 x287 x286 x285 x284 -x283 -x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275 -x274 -x273
-x272 -x271 -x270 -x269 -x268 -x267 -x266 -x265 -x264 x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250
-x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 x239 -x238 x237 -x236 x235 -x234 -x233 x232 -x231 -x230 -x229 x228 x227 x226
x225 -x224 x223 x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202
-x201 -x200 -x199 -x198 -x197 x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179
-x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 -x156
-x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133
x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110
-x109 -x108 -x107 -x106 x105 -x104 x103 -x102 x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 -x93 -x92 -x91 -x90 -x89 -x88 x87 -x86 -x85 -x84 -x83
-x82 -x81 -x80 -x79 -x78 -x77 -x76 x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 x66 -x65 -x64 -x63 x62 -x61 -x60 -x59 x58 x57 x56 x55 -x54
-x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 x44 x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28 -x27 -x26
-x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16 -x15 -x14 -x13 -x12 -x11 x10 x9 x8 x7 -x6 -x5 -x4 -x3 -x2 -x1