PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark4517
Best CPU time to get the best result obtained on this benchmark2.44463
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 4517
Optimality of the best value was proved YES
Number of variables651
Total number of constraints1658
Number of constraints which are clauses1656
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints2
Minimum length of a constraint1
Maximum length of a constraint42
Number of terms in the objective function 651
Biggest coefficient in the objective function 61
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 28138
Number of bits of the sum of numbers in the objective function 15
Biggest number in a constraint 61
Number of bits of the biggest number in a constraint 6
Biggest sum of numbers in a constraint 28138
Number of bits of the biggest sum of numbers15
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx 2 2011-06-10 (fixed) (complete)3485934OPT4517 2.44463 2.44546
SCIP spx E_2 2011-06-10 (fixed) (complete)3489376OPT4517 2.46162 2.46248
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453116OPT4517 2.47462 2.47478
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451456OPT4517 2.47862 2.4789
borg pb-opt-11.04.03 (complete)3481962OPT4517 2.48862 2.7164
bsolo 3.2 (complete)3463564SAT4742 1798 1797.96
pwbo 1.1 (complete)3500132SAT (TO)5225 1800.07 900.028
Sat4j Resolution 2.3.0 (complete)3459438SAT (TO)5351 1800.11 1795.66
Sat4j Res//CP 2.3.0 (complete)3455054SAT (TO)5352 1800.36 1088.61
Sat4j CuttingPlanes 2.3.0 (complete)3457246SAT (TO)5576 1800.56 1796.33
clasp 2.0-R4191 (complete)3468671SAT (TO)6525 1800.05 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467162? (TO)6453 1800.05 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3497475? (TO)6453 1800.05 1802.01
MinisatID 2.4.8 [DEPRECATED] (complete)3465224? (TO)6453 1800.07 1800.02
MinisatID 2.5.2 (fixed) (complete)3491097? (TO)6453 1800.08 1800.02
wbo 1.6 (complete)3461352? (TO) 1800.12 1800.04

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 4517
Solution found:
-x651 x650 -x649 -x648 x647 x646 x645 -x644 -x643 -x642 -x641 -x640 -x639 -x638 x637 x636 -x635 -x634 x633 x632 -x631 -x630 -x629 -x628 x627
-x626 -x625 -x624 -x623 -x622 -x621 x620 -x619 x618 x617 -x616 -x615 -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603
-x602 -x601 -x600 x599 -x598 -x597 -x596 -x595 -x594 -x593 -x592 -x591 -x590 x589 -x588 -x587 -x586 -x585 -x584 -x583 -x582 -x581 -x580
-x579 -x578 -x577 x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562 -x561 -x560 x559 -x558 -x557
-x556 -x555 -x554 -x553 x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534
-x533 x532 -x531 -x530 -x529 -x528 -x527 -x526 -x525 -x524 -x523 -x522 -x521 -x520 -x519 -x518 -x517 -x516 x515 -x514 -x513 -x512 -x511
-x510 -x509 -x508 -x507 -x506 x505 -x504 -x503 -x502 -x501 -x500 -x499 x498 -x497 x496 x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487
x486 -x485 x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 x468 -x467 -x466 -x465 -x464 -x463
-x462 -x461 -x460 -x459 x458 x457 -x456 -x455 -x454 -x453 x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 x442 -x441 -x440 -x439
-x438 x437 -x436 -x435 -x434 -x433 x432 -x431 x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415
-x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392
-x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 -x383 -x382 -x381 -x380 x379 x378 x377 x376 -x375 x374 -x373 -x372 -x371 x370 -x369 x368
-x367 -x366 x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 x350 -x349 -x348 -x347 -x346 -x345
-x344 -x343 -x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 x323 -x322
-x321 x320 -x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 x303 -x302 -x301 -x300 x299 x298
x297 x296 -x295 -x294 -x293 -x292 -x291 x290 -x289 -x288 x287 x286 x285 x284 -x283 -x282 -x281 x280 -x279 -x278 -x277 -x276 -x275 -x274 x273
x272 -x271 -x270 -x269 -x268 x267 -x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 x256 -x255 -x254 -x253 x252 x251 -x250 -x249
x248 x247 -x246 -x245 -x244 -x243 -x242 x241 x240 -x239 -x238 -x237 -x236 x235 -x234 -x233 -x232 -x231 -x230 -x229 x228 -x227 -x226 -x225
-x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 x206 -x205 -x204 -x203 -x202
-x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 x188 x187 x186 x185 x184 x183 -x182 x181 -x180 x179 x178 -x177
-x176 x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 x166 -x165 x164 -x163 -x162 -x161 -x160 x159 -x158 -x157 -x156 -x155 -x154 -x153
-x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 x142 x141 x140 -x139 -x138 -x137 -x136 x135 -x134 -x133 -x132 -x131 -x130 -x129
-x128 -x127 -x126 x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 x115 -x114 -x113 x112 x111 -x110 -x109 -x108 -x107 -x106 -x105
-x104 -x103 x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78
-x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 x53 -x52 -x51 -x50
x49 -x48 -x47 -x46 -x45 -x44 -x43 x42 -x41 -x40 x39 -x38 -x37 -x36 x35 -x34 x33 x32 x31 -x30 -x29 -x28 -x27 x26 -x25 -x24 x23 -x22 -x21 -x20
-x19 -x18 -x17 -x16 x15 -x14 -x13 -x12 -x11 x10 -x9 x8 x7 -x6 -x5 -x4 -x3 -x2 -x1