PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark4561
Best CPU time to get the best result obtained on this benchmark0.459929
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 4561
Optimality of the best value was proved YES
Number of variables577
Total number of constraints1322
Number of constraints which are clauses1306
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints16
Minimum length of a constraint2
Maximum length of a constraint17
Number of terms in the objective function 577
Biggest coefficient in the objective function 61
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 24510
Number of bits of the sum of numbers in the objective function 15
Biggest number in a constraint 61
Number of bits of the biggest number in a constraint 6
Biggest sum of numbers in a constraint 24510
Number of bits of the biggest sum of numbers15
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E_2 2011-06-10 (fixed) (complete)3489374OPT4561 0.459929 0.459734
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451454OPT4561 0.466928 0.466807
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3453114OPT4561 0.483926 0.488019
SCIP spx 2 2011-06-10 (fixed) (complete)3485932OPT4561 0.517921 0.518582
borg pb-opt-11.04.03 (complete)3481960OPT4561 1.04784 1.33024
bsolo 3.2 (complete)3463562OPT4561 13.5049 13.5057
Sat4j CuttingPlanes 2.3.0 (complete)3457244SAT (TO)5089 1800.72 1794.84
Sat4j Res//CP 2.3.0 (complete)3455052SAT (TO)5176 1800.18 1139.26
Sat4j Resolution 2.3.0 (complete)3459436SAT (TO)5465 1800.08 1795.76
clasp 2.0-R4191 (complete)3468669SAT (TO)5548 1800.07 1800.02
pwbo 1.1 (complete)3500130SAT (TO)5566 1800.08 900.033
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3467160? (TO)6443 1800.07 1800.02
MinisatID 2.4.8 [DEPRECATED] (complete)3465222? (TO)6443 1800.08 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3497473? (TO)6446 1800.04 1802.01
MinisatID 2.5.2 (fixed) (complete)3491095? (TO)6446 1800.05 1800.01
wbo 1.6 (complete)3461350? (TO) 1800.07 1800.04

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 4561
Solution found:
x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562 -x561 -x560 -x559 -x558 -x557 -x556 -x555
-x554 -x553 -x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532
-x531 -x530 -x529 -x528 -x527 -x526 -x525 -x524 -x523 -x522 -x521 -x520 -x519 -x518 -x517 -x516 -x515 -x514 -x513 -x512 -x511 -x510 -x509
-x508 -x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486
-x485 -x484 -x483 -x482 x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x465 -x464 -x463
-x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 -x441 -x440
-x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417
-x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402 x401 -x400 x399 -x398 x397 -x396 x395 -x394 x393
-x392 x391 -x390 x389 -x388 x387 -x386 x385 -x384 x383 -x382 x381 -x380 x379 -x378 x377 -x376 x375 -x374 x373 -x372 x371 x370 -x369 -x368
-x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 x353 x352 x351 x350 x349 x348 x347 x346 x345 x344 x343
x342 x341 x340 x339 x338 x337 x336 x335 x334 x333 x332 x331 x330 x329 x328 x327 x326 x325 x324 -x323 x322 x321 x320 x319 x318 x317 x316 x315
x314 x313 x312 x311 x310 x309 x308 -x307 x306 x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296 -x295 -x294 -x293 -x292 -x291 -x290
-x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275 -x274 -x273 x272 x271 x270 x269 x268 x267 x266
x265 x264 x263 x262 x261 x260 x259 -x258 -x257 -x256 -x255 -x254 x253 -x252 -x251 x250 -x249 -x248 x247 -x246 -x245 x244 -x243 -x242 x241
-x240 -x239 x238 -x237 -x236 x235 -x234 -x233 x232 -x231 -x230 x229 -x228 -x227 x226 -x225 -x224 x223 -x222 -x221 x220 -x219 -x218 x217
-x216 -x215 x214 -x213 -x212 -x211 -x210 -x209 x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194
-x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171
-x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 -x156 -x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148
-x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125
-x124 -x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x105 -x104 -x103 -x102
-x101 -x100 -x99 x98 -x97 -x96 -x95 -x94 -x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 x79 -x78 x77 -x76 x75 -x74
x73 -x72 x71 -x70 x69 -x68 x67 -x66 x65 -x64 x63 -x62 x61 -x60 x59 -x58 x57 -x56 x55 -x54 x53 -x52 x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44
-x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16
-x15 -x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 -x1