PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark191
Best CPU time to get the best result obtained on this benchmark1797.07
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 185
Optimality of the best value was proved NO
Number of variables475
Total number of constraints475
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints475
Minimum length of a constraint3
Maximum length of a constraint19
Number of terms in the objective function 475
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 475
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 30
Number of bits of the biggest number in a constraint 5
Biggest sum of numbers in a constraint 475
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E_2 2011-06-10 (fixed) (complete)3488810SAT191 1797.07 1797.03
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452550SAT191 1800.03 1800.04
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3450890SAT (TO)193 1800.08 1800.02
SCIP spx 2 2011-06-10 (fixed) (complete)3485368SAT195 1797.06 1797.04
Sat4j Resolution 2.3.0 (complete)3458717SAT (TO)214 1800.15 1796.95
Sat4j Res//CP 2.3.0 (complete)3454333SAT (TO)216 1800.35 1093.3
bsolo 3.2 (complete)3462998SAT219 1798.01 1797.95
Sat4j CuttingPlanes 2.3.0 (complete)3456525SAT (TO)221 1800.25 1790.92
clasp 2.0-R4191 (complete)3468105SAT (TO)222 1800.06 1800.02
pwbo 1.1 (complete)3500081SAT (TO)222 1800.07 900.047
MinisatID 2.4.8 [DEPRECATED] (complete)3464658? (TO)232 1800.08 1800.02
MinisatID 2.5.2 (fixed) (complete)3490531? (TO)239 1800.06 1800.01
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466441? (TO)240 1800.03 1800.02
MinisatID 2.5.2-gmp (fixed) (complete)3496754? (TO)240 1800.06 1802.01
borg pb-opt-11.04.03 (complete)3481732? (MO) 295.82 304.794
wbo 1.6 (complete)3460786? (TO) 1800.12 1800.06

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 191
Solution found:
x475 -x474 -x473 x472 x471 -x470 x469 x468 -x467 -x466 x465 -x464 -x463 x462 -x461 -x460 -x459 -x458 -x457 x456 -x455 -x454 x453 -x452 -x451
x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 x442 x441 x440 -x439 x438 x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 x429 -x428 x427
-x426 x425 x424 -x423 -x422 x421 -x420 x419 -x418 x417 -x416 x415 x414 x413 -x412 x411 x410 x409 -x408 -x407 -x406 -x405 -x404 -x403 x402
-x401 -x400 -x399 x398 x397 -x396 -x395 -x394 -x393 x392 x391 x390 -x389 -x388 x387 x386 x385 -x384 -x383 x382 -x381 x380 -x379 x378 -x377
-x376 -x375 -x374 -x373 x372 x371 -x370 -x369 x368 -x367 x366 x365 -x364 x363 -x362 -x361 -x360 x359 -x358 x357 -x356 -x355 x354 x353 -x352
-x351 -x350 -x349 x348 -x347 -x346 x345 x344 -x343 -x342 -x341 -x340 x339 -x338 -x337 -x336 x335 -x334 -x333 -x332 x331 x330 -x329 x328 x327
-x326 -x325 -x324 x323 -x322 x321 x320 -x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 x306 x305 -x304 -x303
x302 -x301 -x300 -x299 x298 x297 -x296 -x295 -x294 -x293 -x292 x291 x290 x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 x281 -x280 -x279
x278 -x277 x276 -x275 -x274 x273 x272 -x271 x270 -x269 -x268 x267 -x266 x265 x264 -x263 x262 -x261 x260 x259 -x258 x257 -x256 x255 x254 x253
-x252 -x251 -x250 -x249 x248 x247 x246 -x245 -x244 -x243 x242 -x241 -x240 -x239 -x238 -x237 -x236 x235 -x234 -x233 x232 -x231 -x230 -x229
-x228 x227 x226 x225 -x224 -x223 -x222 x221 -x220 -x219 x218 x217 -x216 x215 -x214 -x213 -x212 -x211 x210 x209 -x208 -x207 -x206 x205 x204
-x203 x202 x201 x200 -x199 x198 x197 -x196 -x195 -x194 -x193 x192 x191 x190 x189 -x188 x187 -x186 -x185 -x184 -x183 -x182 -x181 x180 -x179
-x178 -x177 x176 x175 -x174 -x173 x172 x171 -x170 -x169 -x168 x167 -x166 x165 -x164 -x163 -x162 x161 x160 -x159 -x158 -x157 x156 -x155 x154
-x153 -x152 x151 x150 x149 x148 -x147 x146 x145 -x144 -x143 x142 -x141 x140 -x139 -x138 -x137 -x136 -x135 -x134 x133 x132 -x131 -x130 -x129
-x128 x127 x126 x125 x124 x123 x122 -x121 x120 x119 x118 x117 x116 -x115 -x114 x113 x112 -x111 -x110 x109 -x108 -x107 -x106 x105 -x104 -x103
-x102 x101 x100 -x99 -x98 x97 -x96 -x95 -x94 -x93 -x92 x91 x90 x89 -x88 -x87 x86 x85 -x84 -x83 -x82 x81 x80 -x79 x78 -x77 -x76 x75 x74 -x73
x72 x71 -x70 -x69 -x68 -x67 x66 -x65 -x64 x63 -x62 -x61 x60 -x59 -x58 -x57 -x56 x55 x54 x53 -x52 -x51 -x50 x49 x48 x47 x46 x45 x44 x43 -x42
-x41 -x40 x39 x38 x37 -x36 -x35 -x34 x33 -x32 x31 x30 -x29 -x28 x27 x26 -x25 -x24 -x23 -x22 x21 -x20 -x19 -x18 x17 -x16 -x15 -x14 x13 -x12
x11 -x10 -x9 -x8 x7 -x6 -x5 -x4 x3 -x2 -x1