PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark193
Best CPU time to get the best result obtained on this benchmark1797.09
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 189
Optimality of the best value was proved NO
Number of variables481
Total number of constraints481
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints481
Minimum length of a constraint3
Maximum length of a constraint19
Number of terms in the objective function 481
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 481
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 30
Number of bits of the biggest number in a constraint 5
Biggest sum of numbers in a constraint 481
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx 2 2011-06-10 (fixed) (complete)3485496SAT193 1797.09 1797.04
SCIP spx SCIP with SoPlex [DEPRECATED] (complete)3452678SAT (TO)194 1800.06 1800.02
SCIP spx E SCIP with SoPlex [DEPRECATED] (complete)3451018SAT (TO)194 1800.08 1800.06
SCIP spx E_2 2011-06-10 (fixed) (complete)3488938SAT197 1797.11 1797.05
Sat4j Resolution 2.3.0 (complete)3458900SAT (TO)217 1800.14 1796.66
Sat4j Res//CP 2.3.0 (complete)3454516SAT (TO)217 1800.2 1088.32
bsolo 3.2 (complete)3463126SAT219 1798.01 1798
Sat4j CuttingPlanes 2.3.0 (complete)3456708SAT (TO)223 1800.26 1790.22
pwbo 1.1 (complete)3500078SAT (TO)224 1800.08 900.05
clasp 2.0-R4191 (complete)3468233SAT (TO)224 1800.1 1800.02
MinisatID 2.4.8 [DEPRECATED] (complete)3464786? (TO)237 1800.04 1800.02
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466624? (TO)237 1800.05 1800.01
MinisatID 2.5.2-gmp (fixed) (complete)3496937? (TO)237 1800.08 1802.01
MinisatID 2.5.2 (fixed) (complete)3490659? (TO)237 1800.08 1800.02
borg pb-opt-11.04.03 (complete)3481850? (MO) 287.62 296.986
wbo 1.6 (complete)3460914? (TO) 1800.13 1800.16

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 193
Solution found:
-x481 x480 x479 -x478 -x477 -x476 -x475 x474 -x473 -x472 -x471 -x470 -x469 x468 x467 -x466 -x465 x464 x463 x462 x461 -x460 -x459 -x458 x457
-x456 x455 -x454 x453 x452 -x451 -x450 x449 -x448 -x447 -x446 -x445 x444 -x443 x442 -x441 x440 -x439 x438 -x437 -x436 x435 -x434 -x433 -x432
-x431 -x430 -x429 -x428 -x427 x426 x425 -x424 x423 -x422 -x421 -x420 x419 -x418 -x417 -x416 -x415 -x414 -x413 x412 -x411 x410 -x409 x408
-x407 -x406 x405 -x404 x403 -x402 x401 -x400 -x399 x398 -x397 x396 x395 -x394 x393 -x392 x391 x390 -x389 x388 -x387 x386 -x385 -x384 -x383
-x382 -x381 -x380 -x379 -x378 x377 x376 -x375 -x374 -x373 x372 -x371 -x370 -x369 -x368 x367 -x366 x365 -x364 x363 -x362 x361 -x360 -x359
-x358 x357 x356 -x355 x354 x353 -x352 -x351 -x350 -x349 x348 -x347 -x346 -x345 x344 x343 x342 -x341 x340 -x339 x338 -x337 -x336 -x335 x334
x333 x332 -x331 -x330 -x329 x328 x327 x326 x325 x324 x323 x322 -x321 -x320 x319 x318 x317 -x316 x315 -x314 x313 x312 x311 x310 -x309 -x308
-x307 -x306 -x305 -x304 x303 x302 -x301 -x300 -x299 -x298 -x297 -x296 x295 x294 x293 x292 -x291 -x290 x289 x288 x287 -x286 -x285 -x284 x283
x282 x281 -x280 -x279 x278 -x277 -x276 -x275 -x274 -x273 -x272 -x271 x270 x269 x268 -x267 -x266 -x265 x264 x263 -x262 x261 -x260 x259 x258
-x257 -x256 -x255 -x254 -x253 x252 -x251 x250 x249 -x248 -x247 -x246 x245 x244 x243 x242 -x241 -x240 -x239 x238 -x237 x236 -x235 x234 -x233
-x232 x231 x230 x229 x228 x227 x226 -x225 -x224 -x223 -x222 x221 x220 x219 -x218 -x217 -x216 x215 -x214 x213 -x212 -x211 x210 -x209 -x208
-x207 -x206 -x205 -x204 -x203 x202 -x201 x200 x199 -x198 -x197 -x196 -x195 x194 x193 -x192 -x191 -x190 x189 x188 -x187 -x186 x185 -x184
-x183 -x182 -x181 -x180 -x179 x178 -x177 x176 x175 -x174 -x173 -x172 x171 x170 -x169 -x168 x167 -x166 -x165 -x164 x163 -x162 x161 -x160
-x159 x158 x157 x156 -x155 x154 -x153 x152 -x151 x150 -x149 -x148 x147 x146 x145 -x144 x143 -x142 x141 -x140 -x139 x138 -x137 x136 -x135
x134 -x133 -x132 x131 x130 -x129 x128 -x127 -x126 -x125 -x124 x123 -x122 x121 x120 -x119 -x118 x117 x116 -x115 x114 x113 x112 x111 -x110
-x109 x108 x107 -x106 x105 x104 x103 x102 x101 -x100 -x99 -x98 -x97 -x96 -x95 x94 -x93 -x92 -x91 x90 x89 -x88 -x87 -x86 x85 x84 x83 -x82
-x81 -x80 -x79 -x78 x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 x66 -x65 x64 -x63 -x62 -x61 x60 -x59 x58 -x57 -x56 -x55 x54 -x53
x52 -x51 -x50 -x49 -x48 x47 x46 -x45 -x44 -x43 x42 -x41 x40 x39 -x38 -x37 x36 -x35 x34 -x33 x32 -x31 -x30 -x29 -x28 -x27 -x26 -x25 x24 -x23
-x22 -x21 -x20 -x19 x18 x17 -x16 x15 -x14 x13 -x12 -x11 -x10 x9 -x8 -x7 -x6 x5 -x4 x3 -x2 -x1