2017 XCSP3 competition: mini-solver track (sequential and parallel solvers): solvers results per benchmarks

Result page for benchmark
GraphColoring/GraphColoring-m1-mono/
GraphColoring-wap06a.xml

Jump to solvers results

General information on the benchmark

NameGraphColoring/GraphColoring-m1-mono/
GraphColoring-wap06a.xml
MD5SUMa8532fde929f2c832645b1246a7d35a6
Bench CategoryCOP (optimization problem)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark40
Best CPU time to get the best result obtained on this benchmark2400.05
Satisfiable
(Un)Satisfiability was proved
Number of variables947
Number of constraints43571
Number of domains1
Minimum domain size947
Maximum domain size947
Distribution of domain sizes[{"size":947,"count":947}]
Minimum variable degree10
Maximum variable degree231
Distribution of variable degrees[{"degree":10,"count":2},{"degree":13,"count":3},{"degree":15,"count":1},{"degree":16,"count":4},{"degree":17,"count":3},{"degree":20,"count":1},{"degree":24,"count":4},{"degree":26,"count":1},{"degree":29,"count":3},{"degree":31,"count":7},{"degree":32,"count":5},{"degree":33,"count":5},{"degree":34,"count":9},{"degree":35,"count":30},{"degree":36,"count":21},{"degree":37,"count":9},{"degree":38,"count":23},{"degree":39,"count":11},{"degree":40,"count":88},{"degree":41,"count":1},{"degree":42,"count":1},{"degree":43,"count":4},{"degree":44,"count":10},{"degree":45,"count":2},{"degree":46,"count":8},"...",{"degree":184,"count":2}, {"degree":185,"count":5}, {"degree":186,"count":2}, {"degree":187,"count":1}, {"degree":188,"count":1}, {"degree":189,"count":1}, {"degree":190,"count":1}, {"degree":191,"count":2}, {"degree":192,"count":2}, {"degree":193,"count":1}, {"degree":194,"count":2}, {"degree":195,"count":2}, {"degree":196,"count":1}, {"degree":199,"count":2}, {"degree":200,"count":1}, {"degree":202,"count":1}, {"degree":205,"count":1}, {"degree":207,"count":1}, {"degree":210,"count":1}, {"degree":211,"count":1}, {"degree":213,"count":1}, {"degree":218,"count":1}, {"degree":219,"count":1}, {"degree":224,"count":2}, {"degree":231,"count":1}]
Minimum constraint arity2
Maximum constraint arity2
Distribution of constraint arities[{"arity":2,"count":43571}]
Number of extensional constraints0
Number of intensional constraints43571
Distribution of constraint types[{"type":"intension","count":43571}]
Optimization problemYES
Type of objectivemin MAXIMUM

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
cosoco-mini 1.1 (2017-07-29) (complete)4259877SAT (TO)40 2400.05 2400.45
cosoco-mini 1.12 (complete)4267058SAT (TO)40 2400.05 2400.01
Naxos 1.1.0 (complete)4251663SAT (TO)49 2400.05 2400
cosoco-mini 1.1 (2017-06-27) (complete)4251662No Cert. 2400.02 2400.1

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 40
Solution found:
<instantiation type='solution' cost='40'> <list>x[0] x[100] x[101] x[102] x[103] x[104] x[105] x[106] x[107] x[108] x[109] x[10] x[110]
x[111] x[112] x[113] x[114] x[115] x[116] x[117] x[118] x[119] x[11] x[120] x[121] x[122] x[123] x[124] x[125] x[126] x[127] x[128] x[129]
x[12] x[130] x[131] x[132] x[133] x[134] x[135] x[136] x[137] x[138] x[139] x[13] x[140] x[141] x[142] x[143] x[144] x[145] x[146] x[147]
x[148] x[149] x[14] x[150] x[151] x[152] x[153] x[154] x[155] x[156] x[157] x[158] x[159] x[15] x[160] x[161] x[162] x[163] x[164] x[165]
x[166] x[167] x[168] x[169] x[16] x[170] x[171] x[172] x[173] x[174] x[175] x[176] x[177] x[178] x[179] x[17] x[180] x[181] x[182] x[183]
x[184] x[185] x[186] x[187] x[188] x[189] x[18] x[190] x[191] x[192] x[193] x[194] x[195] x[196] x[197] x[198] x[199] x[19] x[1] x[200]
x[201] x[202] x[203] x[204] x[205] x[206] x[207] x[208] x[209] x[20] x[210] x[211] x[212] x[213] x[214] x[215] x[216] x[217] x[218] x[219]
x[21] x[220] x[221] x[222] x[223] x[224] x[225] x[226] x[227] x[228] x[229] x[22] x[230] x[231] x[232] x[233] x[234] x[235] x[236] x[237]
x[238] x[239] x[23] x[240] x[241] x[242] x[243] x[244] x[245] x[246] x[247] x[248] x[249] x[24] x[250] x[251] x[252] x[253] x[254] x[255]
x[256] x[257] x[258] x[259] x[25] x[260] x[261] x[262] x[263] x[264] x[265] x[266] x[267] x[268] x[269] x[26] x[270] x[271] x[272] x[273]
x[274] x[275] x[276] x[277] x[278] x[279] x[27] x[280] x[281] x[282] x[283] x[284] x[285] x[286] x[287] x[288] x[289] x[28] x[290] x[291]
x[292] x[293] x[294] x[295] x[296] x[297] x[298] x[299] x[29] x[2] x[300] x[301] x[302] x[303] x[304] x[305] x[306] x[307] x[308] x[309]
x[30] x[310] x[311] x[312] x[313] x[314] x[315] x[316] x[317] x[318] x[319] x[31] x[320] x[321] x[322] x[323] x[324] x[325] x[326] x[327]
x[328] x[329] x[32] x[330] x[331] x[332] x[333] x[334] x[335] x[336] x[337] x[338] x[339] x[33] x[340] x[341] x[342] x[343] x[344] x[345]
x[346] x[347] x[348] x[349] x[34] x[350] x[351] x[352] x[353] x[354] x[355] x[356] x[357] x[358] x[359] x[35] x[360] x[361] x[362] x[363]
x[364] x[365] x[366] x[367] x[368] x[369] x[36] x[370] x[371] x[372] x[373] x[374] x[375] x[376] x[377] x[378] x[379] x[37] x[380] x[381]
x[382] x[383] x[384] x[385] x[386] x[387] x[388] x[389] x[38] x[390] x[391] x[392] x[393] x[394] x[395] x[396] x[397] x[398] x[399] x[39]
x[3] x[400] x[401] x[402] x[403] x[404] x[405] x[406] x[407] x[408] x[409] x[40] x[410] x[411] x[412] x[413] x[414] x[415] x[416] x[417]
x[418] x[419] x[41] x[420] x[421] x[422] x[423] x[424] x[425] x[426] x[427] x[428] x[429] x[42] x[430] x[431] x[432] x[433] x[434] x[435]
x[436] x[437] x[438] x[439] x[43] x[440] x[441] x[442] x[443] x[444] x[445] x[446] x[447] x[448] x[449] x[44] x[450] x[451] x[452] x[453]
x[454] x[455] x[456] x[457] x[458] x[459] x[45] x[460] x[461] x[462] x[463] x[464] x[465] x[466] x[467] x[468] x[469] x[46] x[470] x[471]
x[472] x[473] x[474] x[475] x[476] x[477] x[478] x[479] x[47] x[480] x[481] x[482] x[483] x[484] x[485] x[486] x[487] x[488] x[489] x[48]
x[490] x[491] x[492] x[493] x[494] x[495] x[496] x[497] x[498] x[499] x[49] x[4] x[500] x[501] x[502] x[503] x[504] x[505] x[506] x[507]
x[508] x[509] x[50] x[510] x[511] x[512] x[513] x[514] x[515] x[516] x[517] x[518] x[519] x[51] x[520] x[521] x[522] x[523] x[524] x[525]
x[526] x[527] x[528] x[529] x[52] x[530] x[531] x[532] x[533] x[534] x[535] x[536] x[537] x[538] x[539] x[53] x[540] x[541] x[542] x[543]
x[544] x[545] x[546] x[547] x[548] x[549] x[54] x[550] x[551] x[552] x[553] x[554] x[555] x[556] x[557] x[558] x[559] x[55] x[560] x[561]
x[562] x[563] x[564] x[565] x[566] x[567] x[568] x[569] x[56] x[570] x[571] x[572] x[573] x[574] x[575] x[576] x[577] x[578] x[579] x[57]
x[580] x[581] x[582] x[583] x[584] x[585] x[586] x[587] x[588] x[589] x[58] x[590] x[591] x[592] x[593] x[594] x[595] x[596] x[597] x[598]
x[599] x[59] x[5] x[600] x[601] x[602] x[603] x[604] x[605] x[606] x[607] x[608] x[609] x[60] x[610] x[611] x[612] x[613] x[614] x[615]
x[616] x[617] x[618] x[619] x[61] x[620] x[621] x[622] x[623] x[624] x[625] x[626] x[627] x[628] x[629] x[62] x[630] x[631] x[632] x[633]
x[634] x[635] x[636] x[637] x[638] x[639] x[63] x[640] x[641] x[642] x[643] x[644] x[645] x[646] x[647] x[648] x[649] x[64] x[650] x[651]
x[652] x[653] x[654] x[655] x[656] x[657] x[658] x[659] x[65] x[660] x[661] x[662] x[663] x[664] x[665] x[666] x[667] x[668] x[669] x[66]
x[670] x[671] x[672] x[673] x[674] x[675] x[676] x[677] x[678] x[679] x[67] x[680] x[681] x[682] x[683] x[684] x[685] x[686] x[687] x[688]
x[689] x[68] x[690] x[691] x[692] x[693] x[694] x[695] x[696] x[697] x[698] x[699] x[69] x[6] x[700] x[701] x[702] x[703] x[704] x[705]
x[706] x[707] x[708] x[709] x[70] x[710] x[711] x[712] x[713] x[714] x[715] x[716] x[717] x[718] x[719] x[71] x[720] x[721] x[722] x[723]
x[724] x[725] x[726] x[727] x[728] x[729] x[72] x[730] x[731] x[732] x[733] x[734] x[735] x[736] x[737] x[738] x[739] x[73] x[740] x[741]
x[742] x[743] x[744] x[745] x[746] x[747] x[748] x[749] x[74] x[750] x[751] x[752] x[753] x[754] x[755] x[756] x[757] x[758] x[759] x[75]
x[760] x[761] x[762] x[763] x[764] x[765] x[766] x[767] x[768] x[769] x[76] x[770] x[771] x[772] x[773] x[774] x[775] x[776] x[777] x[778]
x[779] x[77] x[780] x[781] x[782] x[783] x[784] x[785] x[786] x[787] x[788] x[789] x[78] x[790] x[791] x[792] x[793] x[794] x[795] x[796]
x[797] x[798] x[799] x[79] x[7] x[800] x[801] x[802] x[803] x[804] x[805] x[806] x[807] x[808] x[809] x[80] x[810] x[811] x[812] x[813]
x[814] x[815] x[816] x[817] x[818] x[819] x[81] x[820] x[821] x[822] x[823] x[824] x[825] x[826] x[827] x[828] x[829] x[82] x[830] x[831]
x[832] x[833] x[834] x[835] x[836] x[837] x[838] x[839] x[83] x[840] x[841] x[842] x[843] x[844] x[845] x[846] x[847] x[848] x[849] x[84]
x[850] x[851] x[852] x[853] x[854] x[855] x[856] x[857] x[858] x[859] x[85] x[860] x[861] x[862] x[863] x[864] x[865] x[866] x[867] x[868]
x[869] x[86] x[870] x[871] x[872] x[873] x[874] x[875] x[876] x[877] x[878] x[879] x[87] x[880] x[881] x[882] x[883] x[884] x[885] x[886]
x[887] x[888] x[889] x[88] x[890] x[891] x[892] x[893] x[894] x[895] x[896] x[897] x[898] x[899] x[89] x[8] x[900] x[901] x[902] x[903]
x[904] x[905] x[906] x[907] x[908] x[909] x[90] x[910] x[911] x[912] x[913] x[914] x[915] x[916] x[917] x[918] x[919] x[91] x[920] x[921]
x[922] x[923] x[924] x[925] x[926] x[927] x[928] x[929] x[92] x[930] x[931] x[932] x[933] x[934] x[935] x[936] x[937] x[938] x[939] x[93]
x[940] x[941] x[942] x[943] x[944] x[945] x[946] x[94] x[95] x[96] x[97] x[98] x[99] x[9] </list> <values>38 16 2 22 5 12 13 7 31 1 5 14 3
30 13 34 31 30 24 17 16 14 4 39 17 14 11 9 17 9 1 16 21 16 22 4 3 4 5 22 0 17 7 24 9 4 8 20 11 33 25 30 14 24 37 21 11 0 15 29 33 21 20 8 25
4 37 13 35 25 36 26 11 11 7 19 25 24 26 32 31 12 14 30 3 6 27 0 26 14 7 20 0 1 7 0 1 3 7 19 29 34 0 8 17 20 13 20 6 3 2 8 21 27 16 6 1 29 37
32 28 30 10 20 24 11 21 13 19 16 10 22 18 18 18 0 29 31 18 33 20 26 4 29 31 2 10 4 2 1 19 0 12 18 2 10 29 21 13 11 6 36 15 1 21 7 30 16 18
21 17 28 2 29 0 2 40 21 4 10 24 16 15 1 16 2 28 33 6 7 24 10 35 12 19 18 22 5 11 22 14 14 0 16 2 3 9 13 23 6 19 3 36 22 5 9 0 35 40 30 4 7
14 24 21 20 9 3 12 1 7 13 28 17 12 1 25 19 15 23 29 26 22 33 13 25 23 4 0 10 26 37 7 16 18 18 10 18 12 20 6 28 28 6 29 23 8 27 18 19 12 8 6
26 36 1 35 34 16 19 12 5 32 13 1 5 12 5 0 38 23 2 6 32 19 26 3 28 33 27 5 13 10 11 2 19 4 6 30 7 6 4 19 8 6 6 31 2 35 28 14 4 37 36 25 39 7
10 27 30 26 9 10 1 31 38 15 9 0 19 34 21 39 0 12 7 15 8 8 5 3 38 3 25 6 34 2 37 36 15 11 23 10 18 19 2 5 6 8 4 20 17 29 26 0 38 35 12 38 23
24 22 15 2 2 1 6 2 15 4 4 39 36 0 36 7 10 17 27 9 0 37 19 35 8 15 2 23 20 24 16 0 16 22 0 17 14 20 26 32 29 14 21 6 1 21 28 34 18 38 18 33 6
32 1 4 38 8 4 3 1 1 9 33 23 22 30 22 39 0 3 28 7 36 23 27 34 22 18 5 11 12 10 17 27 2 32 39 39 5 8 9 2 14 22 35 26 38 11 27 12 36 35 31 8 20
15 8 30 19 39 19 21 7 17 16 29 25 10 23 26 1 30 34 4 14 24 11 21 15 29 31 26 5 9 13 6 18 38 22 31 18 14 8 1 33 8 9 10 6 34 11 26 2 15 11 32
10 15 20 11 27 8 32 5 28 2 12 19 20 27 36 23 9 15 37 9 14 19 24 9 4 8 18 35 27 10 13 17 6 5 14 6 31 0 15 29 20 3 17 29 27 36 33 24 22 17 3
29 1 1 2 37 7 34 40 0 0 4 26 14 13 40 1 17 4 10 35 40 31 17 6 25 33 3 23 12 1 39 17 22 22 36 30 17 14 13 14 23 36 28 12 15 11 15 20 19 22 6
3 24 32 20 31 10 19 37 16 21 32 31 32 37 1 11 5 8 9 30 35 30 40 17 25 39 9 11 37 40 12 14 2 11 10 26 19 37 2 37 17 33 36 31 21 20 18 25 30 4
35 13 17 3 15 4 18 12 24 34 23 38 0 26 30 30 31 34 12 23 37 14 25 25 14 36 11 14 39 35 12 29 8 12 30 36 23 4 2 0 19 38 20 12 35 16 12 10 3
40 24 23 32 5 16 37 32 20 38 23 29 9 14 24 0 13 5 26 32 33 15 33 0 27 24 8 19 3 18 28 16 5 28 4 18 23 7 16 24 17 33 10 7 22 39 26 36 14 15 1
23 21 39 35 20 6 19 3 21 15 0 11 26 4 29 29 28 40 25 40 21 24 25 5 31 28 29 26 10 35 34 3 1 21 16 6 16 30 22 3 4 12 9 8 29 32 5 18 33 24 16
38 21 33 8 27 7 38 31 38 20 30 13 28 34 3 2 18 1 24 16 2 18 27 11 0 1 13 9 13 13 25 31 11 1 22 34 15 37 15 9 10 8 28 5 34 16 8 1 5 7 25 32
13 7 27 20 1 33 29 13 24 32 3 32 30 4 9 39 34 10 38 26 27 15 23 17 36 3 33 14 39 34 5 7 0 27 33 3 24 6 6 7 37 30 37 10 28 4 26 11 15 27 32
33 36 11 9 </values> </instantiation>