2018 XCSP3 competition: parallel solvers tracks: solvers results per benchmarks

Result page for benchmark
Bacp/Bacp-m2/
Bacp-m2-06_c18.xml

Jump to solvers results

General information on the benchmark

NameBacp/Bacp-m2/
Bacp-m2-06_c18.xml
MD5SUMa425e3c2d344a7c12b87076aad716824
Bench CategoryCOP (optimization problem)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark10
Best CPU time to get the best result obtained on this benchmark16.3408
Satisfiable
(Un)Satisfiability was proved
Number of variables152
Number of constraints166
Number of domains4
Minimum domain size2
Maximum domain size10
Distribution of domain sizes[{"size":2,"count":120},{"size":5,"count":6},{"size":6,"count":20},{"size":10,"count":6}]
Minimum variable degree1
Maximum variable degree9
Distribution of variable degrees[{"degree":1,"count":6},{"degree":2,"count":6},{"degree":4,"count":120},{"degree":6,"count":2},{"degree":7,"count":11},{"degree":8,"count":4},{"degree":9,"count":3}]
Minimum constraint arity2
Maximum constraint arity21
Distribution of constraint arities[{"arity":2,"count":134},{"arity":6,"count":20},{"arity":21,"count":12}]
Number of extensional constraints120
Number of intensional constraints14
Distribution of constraint types[{"type":"extension","count":120},{"type":"intension","count":14},{"type":"sum","count":32}]
Optimization problemYES
Type of objectivemin MAXIMUM

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
Choco-solver 4.0.7b par (e747e1e) (complete)4297854OPT10 16.3408 2.61591
OscaR - Parallel with EPS 2018-08-14 (complete)4309210OPT10 19.7309 4.46348
OscaR - Parallel with EPS 2018-07-02 (complete)4292090OPT10 23.4967 4.74257

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 10
Solution found:
<instantiation> <list>prd[0] prd[1] prd[2] prd[3] prd[4] prd[5] prd[6] prd[7] prd[8] prd[9] prd[10] prd[11] prd[12] prd[13] prd[14] prd[15]
prd[16] prd[17] prd[18] prd[19] nco[0] nco[1] nco[2] nco[3] nco[4] nco[5] ncr[0] ncr[1] ncr[2] ncr[3] ncr[4] ncr[5] pc[0][0] pc[0][1]
pc[0][2] pc[0][3] pc[0][4] pc[0][5] pc[0][6] pc[0][7] pc[0][8] pc[0][9] pc[0][10] pc[0][11] pc[0][12] pc[0][13] pc[0][14] pc[0][15]
pc[0][16] pc[0][17] pc[0][18] pc[0][19] pc[1][0] pc[1][1] pc[1][2] pc[1][3] pc[1][4] pc[1][5] pc[1][6] pc[1][7] pc[1][8] pc[1][9] pc[1][10]
pc[1][11] pc[1][12] pc[1][13] pc[1][14] pc[1][15] pc[1][16] pc[1][17] pc[1][18] pc[1][19] pc[2][0] pc[2][1] pc[2][2] pc[2][3] pc[2][4]
pc[2][5] pc[2][6] pc[2][7] pc[2][8] pc[2][9] pc[2][10] pc[2][11] pc[2][12] pc[2][13] pc[2][14] pc[2][15] pc[2][16] pc[2][17] pc[2][18]
pc[2][19] pc[3][0] pc[3][1] pc[3][2] pc[3][3] pc[3][4] pc[3][5] pc[3][6] pc[3][7] pc[3][8] pc[3][9] pc[3][10] pc[3][11] pc[3][12] pc[3][13]
pc[3][14] pc[3][15] pc[3][16] pc[3][17] pc[3][18] pc[3][19] pc[4][0] pc[4][1] pc[4][2] pc[4][3] pc[4][4] pc[4][5] pc[4][6] pc[4][7] pc[4][8]
pc[4][9] pc[4][10] pc[4][11] pc[4][12] pc[4][13] pc[4][14] pc[4][15] pc[4][16] pc[4][17] pc[4][18] pc[4][19] pc[5][0] pc[5][1] pc[5][2]
pc[5][3] pc[5][4] pc[5][5] pc[5][6] pc[5][7] pc[5][8] pc[5][9] pc[5][10] pc[5][11] pc[5][12] pc[5][13] pc[5][14] pc[5][15] pc[5][16]
pc[5][17] pc[5][18] pc[5][19] </list> <values>2 2 1 0 3 5 1 1 5 5 2 0 4 4 4 0 0 0 3 3 5 3 3 3 3 3 10 10 9 10 10 9 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 </values> </instantiation>