2018 XCSP3 competition: fast COP track: solvers results per benchmarks

Result page for benchmark
SumColoring/
SumColoring-1-fullins-5_c18.xml

Jump to solvers results

General information on the benchmark

NameSumColoring/
SumColoring-1-fullins-5_c18.xml
MD5SUMee128878a96f2bf381e98278be1f86f4
Bench CategoryCOP (optimization problem)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark241
Best CPU time to get the best result obtained on this benchmark252.092
Satisfiable
(Un)Satisfiability was proved
Number of variables282
Number of constraints3247
Number of domains1
Minimum domain size282
Maximum domain size282
Distribution of domain sizes[{"size":282,"count":282}]
Minimum variable degree9
Maximum variable degree96
Distribution of variable degrees[{"degree":9,"count":4},{"degree":10,"count":6},{"degree":11,"count":11},{"degree":12,"count":8},{"degree":13,"count":13},{"degree":14,"count":13},{"degree":15,"count":13},{"degree":16,"count":16},{"degree":17,"count":15},{"degree":18,"count":15},{"degree":19,"count":11},{"degree":20,"count":11},{"degree":21,"count":12},{"degree":22,"count":12},{"degree":23,"count":9},{"degree":24,"count":9},{"degree":25,"count":10},{"degree":26,"count":10},{"degree":27,"count":10},{"degree":28,"count":10},{"degree":29,"count":4},{"degree":30,"count":4},{"degree":31,"count":4},{"degree":32,"count":4},{"degree":33,"count":3},{"degree":34,"count":3},{"degree":35,"count":6},{"degree":36,"count":3},{"degree":37,"count":3},{"degree":38,"count":3},{"degree":39,"count":3},{"degree":40,"count":3},{"degree":45,"count":3},{"degree":46,"count":3},{"degree":47,"count":3},{"degree":48,"count":3},{"degree":65,"count":3},{"degree":66,"count":3},{"degree":96,"count":3}]
Minimum constraint arity2
Maximum constraint arity2
Distribution of constraint arities[{"arity":2,"count":3247}]
Number of extensional constraints0
Number of intensional constraints3247
Distribution of constraint types[{"type":"intension","count":3247}]
Optimization problemYES
Type of objectivemin SUM

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
Choco-solver 4.0.7b seq (e747e1e) (complete)4301573SAT (TO)241 252.092 247.913
OscaR - Hybrid 2018-08-14 (complete)4310460SAT (TO)272 252.117 239.235
Mistral-2.0 2018-08-01 (complete)4312557SAT (TO)280 251.982 252.01
cosoco 1.12 (complete)4301575SAT (TO)290 251.999 252.01
Concrete 3.9.2-SuperNG (complete)4302834SAT (TO)333 252.126 236.637
Concrete 3.9.2 (complete)4302484SAT (TO)1067 252.109 235.346
OscaR - Conflict Ordering with restarts 2018-08-17 (complete)4312320SAT (TO)6225 252.108 244.218
OscaR - Conflict Ordering with restarts 2018-08-14 (complete)4310110SAT (TO)11673 252.102 245.52
Sat4j-CSP 2018-07-11 (complete)4301574? (TO) 260.282 88.662

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 241
Solution found:
<instantiation> <list>c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13] c[14] c[15] c[16] c[17] c[18] c[19] c[20]
c[21] c[22] c[23] c[24] c[25] c[26] c[27] c[28] c[29] c[30] c[31] c[32] c[33] c[34] c[35] c[36] c[37] c[38] c[39] c[40] c[41] c[42] c[43]
c[44] c[45] c[46] c[47] c[48] c[49] c[50] c[51] c[52] c[53] c[54] c[55] c[56] c[57] c[58] c[59] c[60] c[61] c[62] c[63] c[64] c[65] c[66]
c[67] c[68] c[69] c[70] c[71] c[72] c[73] c[74] c[75] c[76] c[77] c[78] c[79] c[80] c[81] c[82] c[83] c[84] c[85] c[86] c[87] c[88] c[89]
c[90] c[91] c[92] c[93] c[94] c[95] c[96] c[97] c[98] c[99] c[100] c[101] c[102] c[103] c[104] c[105] c[106] c[107] c[108] c[109] c[110]
c[111] c[112] c[113] c[114] c[115] c[116] c[117] c[118] c[119] c[120] c[121] c[122] c[123] c[124] c[125] c[126] c[127] c[128] c[129] c[130]
c[131] c[132] c[133] c[134] c[135] c[136] c[137] c[138] c[139] c[140] c[141] c[142] c[143] c[144] c[145] c[146] c[147] c[148] c[149] c[150]
c[151] c[152] c[153] c[154] c[155] c[156] c[157] c[158] c[159] c[160] c[161] c[162] c[163] c[164] c[165] c[166] c[167] c[168] c[169] c[170]
c[171] c[172] c[173] c[174] c[175] c[176] c[177] c[178] c[179] c[180] c[181] c[182] c[183] c[184] c[185] c[186] c[187] c[188] c[189] c[190]
c[191] c[192] c[193] c[194] c[195] c[196] c[197] c[198] c[199] c[200] c[201] c[202] c[203] c[204] c[205] c[206] c[207] c[208] c[209] c[210]
c[211] c[212] c[213] c[214] c[215] c[216] c[217] c[218] c[219] c[220] c[221] c[222] c[223] c[224] c[225] c[226] c[227] c[228] c[229] c[230]
c[231] c[232] c[233] c[234] c[235] c[236] c[237] c[238] c[239] c[240] c[241] c[242] c[243] c[244] c[245] c[246] c[247] c[248] c[249] c[250]
c[251] c[252] c[253] c[254] c[255] c[256] c[257] c[258] c[259] c[260] c[261] c[262] c[263] c[264] c[265] c[266] c[267] c[268] c[269] c[270]
c[271] c[272] c[273] c[274] c[275] c[276] c[277] c[278] c[279] c[280] c[281] </list> <values>2 5 3 3 2 2 4 2 3 0 0 0 0 0 0 0 0 0 2 2 3 3 2 2
3 2 3 0 3 5 2 4 3 3 2 2 4 2 3 4 4 4 4 2 2 4 2 5 2 2 2 2 2 2 2 2 2 4 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 </values> </instantiation>