PB'16 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-BIGINT (optimisation, big integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark1228810444800
Best CPU time to get the best result obtained on this benchmark6.64199
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 1470471039630
Optimality of the best value was proved NO
Number of variables780
Total number of constraints405
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)36
Number of constraints which are nor clauses,nor cardinality constraints369
Minimum length of a constraint6
Maximum length of a constraint101
Number of terms in the objective function 478
Biggest coefficient in the objective function 536870912000000
Number of bits for the biggest coefficient in the objective function 49
Sum of the numbers in the objective function 1073761158741413
Number of bits of the sum of numbers in the objective function 50
Biggest number in a constraint 71583145981965762560
Number of bits of the biggest number in a constraint 66
Biggest sum of numbers in a constraint 303620978593259231065
Number of bits of the biggest sum of numbers69
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
Sat4j PB 2.3.6 Resolution PB16 (complete)4103920OPT1228810444800 6.64199 5.49038
Sat4j PB 2.3.6 Res+CP PB16 (complete)4103918SAT (TO)1245192525829 1800.87 1730.46
toysat 2016-05-02 (complete)4103917? (MO) 211.588 211.634
minisatp 2012-10-02 git-d91742b (complete)4114630? (MO) 437.358 439.419
NaPS 1.02 (complete)4103919? (TO) 1800.1 1800.46

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 1228810444800
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 x45 x46 -x47 x48 -x49 -x50 x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 -x63 -x64 -x65 -x66 x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87
-x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112
-x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135
-x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 x144 -x145 -x146 x147 x148 -x149 -x150 -x151 -x152 -x153 x154 -x155 -x156 -x157 -x158 -x159
-x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 x175 -x176 -x177 x178 x179 -x180 -x181 -x182 -x183
-x184 x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 x205 -x206
-x207 x208 x209 -x210 x211 -x212 -x213 -x214 -x215 -x216 -x217 x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230
-x231 -x232 x233 x234 -x235 x236 -x237 -x238 x239 -x240 -x241 -x242 -x243 -x244 -x245 x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 -x256 -x257 -x258 -x259 -x260 -x261 x262 x263 -x264 x265 -x266 -x267 x268 -x269 -x270 -x271 x272 -x273 x274 -x275 -x276 -x277 -x278
-x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 x292 x293 -x294 x295 -x296 -x297 x298 -x299 -x300 -x301 -x302
-x303 -x304 -x305 -x306 -x307 x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 x322 -x323 -x324 x325 x326
-x327 -x328 x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349
-x350 x351 x352 x353 x354 -x355 x356 -x357 x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 x372 -x373
-x374 -x375 -x376 -x377 -x378 -x379 -x380 x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 x389 -x390 -x391 x392 -x393 -x394 -x395 -x396 -x397
-x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 x408 -x409 -x410 -x411 x412 -x413 -x414 -x415 -x416 -x417 x418 -x419 -x420 -x421
-x422 -x423 -x424 -x425 -x426 -x427 x428 -x429 -x430 x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 x441 -x442 -x443 -x444 -x445
-x446 -x447 -x448 x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468
-x469 -x470 -x471 x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491
-x492 x493 -x494 -x495 x496 x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 x512 -x513 -x514 -x515
-x516 -x517 -x518 -x519 x520 -x521 -x522 -x523 -x524 -x525 -x526 x527 -x528 -x529 x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539
-x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 x556 -x557 -x558 x559 x560 -x561 -x562 -x563
-x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586
-x587 -x588 -x589 -x590 -x591 -x592 x593 x594 -x595 x596 -x597 -x598 x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610
-x611 -x612 -x613 -x614 x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633
-x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648 -x649 -x650 -x651 x652 -x653 -x654 -x655 -x656
-x657 -x658 -x659 -x660 -x661 -x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671 -x672 -x673 -x674 -x675 -x676 -x677 -x678 -x679
-x680 -x681 -x682 -x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 -x691 x692 -x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702
-x703 -x704 -x705 -x706 -x707 -x708 -x709 -x710 -x711 -x712 -x713 x714 -x715 -x716 x717 x718 -x719 -x720 -x721 -x722 -x723 -x724 -x725 -x726
-x727 -x728 -x729 -x730 x731 -x732 -x733 -x734 -x735 -x736 -x737 -x738 -x739 x740 -x741 -x742 -x743 -x744 -x745 -x746 -x747 -x748 -x749
-x750 -x751 -x752 x753 x754 x755 x756 -x757 x758 -x759 x760 -x761 -x762 -x763 -x764 -x765 -x766 -x767 -x768 -x769 -x770 -x771 -x772 -x773
-x774 -x775 -x776 -x777 -x778 x779 -x780