PB'16 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-BIGINT (optimisation, big integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark1228810444800
Best CPU time to get the best result obtained on this benchmark3.97439
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 1228810444800
Optimality of the best value was proved YES
Number of variables780
Total number of constraints405
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)36
Number of constraints which are nor clauses,nor cardinality constraints369
Minimum length of a constraint6
Maximum length of a constraint101
Number of terms in the objective function 478
Biggest coefficient in the objective function 536870912000000
Number of bits for the biggest coefficient in the objective function 49
Sum of the numbers in the objective function 1073761158741413
Number of bits of the sum of numbers in the objective function 50
Biggest number in a constraint 71583145981965762560
Number of bits of the biggest number in a constraint 66
Biggest sum of numbers in a constraint 303620978593259231065
Number of bits of the biggest sum of numbers69
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
Sat4j PB 2.3.6 Resolution PB16 (complete)4103396OPT1228810444800 3.97439 2.87054
Sat4j PB 2.3.6 Res+CP PB16 (complete)4103394OPT1228810444800 7.59185 11.1263
toysat 2016-05-02 (complete)4103393? (MO) 195.618 195.659
minisatp 2012-10-02 git-d91742b (complete)4114115? (MO) 437.27 437.412
NaPS 1.02 (complete)4103395? (TO) 1800.09 1800.44

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 1228810444800
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 x15 x16 -x17 x18 -x19 -x20 x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 x73 x74 x75 x76 -x77 x78 -x79 x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87
-x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 x106 -x107 -x108 x109 x110 -x111 -x112 -x113
-x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 x136
-x137 -x138 x139 x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159
-x160 -x161 -x162 x163 x164 -x165 x166 -x167 -x168 x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181 -x182 -x183
-x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206
-x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229
-x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252
-x253 x254 -x255 -x256 x257 x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276
-x277 -x278 -x279 -x280 -x281 -x282 x283 x284 x285 x286 -x287 x288 -x289 x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300
-x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323
-x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346
-x347 -x348 -x349 -x350 -x351 -x352 -x353 x354 -x355 -x356 x357 x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370
-x371 -x372 -x373 -x374 x375 -x376 -x377 x378 x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394
x395 -x396 -x397 x398 x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 x413 x414 -x415 x416 -x417 -x418
x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 x432 x433 -x434 x435 -x436 -x437 x438 -x439 -x440 -x441 -x442
-x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 x452 x453 -x454 x455 -x456 -x457 x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466
-x467 -x468 -x469 -x470 -x471 x472 -x473 -x474 x475 x476 -x477 -x478 -x479 -x480 -x481 x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 x490
-x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 x511 -x512 -x513
-x514 -x515 -x516 -x517 -x518 -x519 x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 -x528 x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536
-x537 -x538 -x539 -x540 x541 -x542 -x543 -x544 -x545 -x546 x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 x556 -x557 -x558 -x559 -x560
-x561 -x562 -x563 -x564 -x565 x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583
-x584 x585 -x586 -x587 -x588 -x589 -x590 x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 x604 -x605 -x606 -x607
-x608 x609 -x610 -x611 -x612 -x613 -x614 -x615 x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 x624 -x625 -x626 -x627 -x628 x629 -x630 -x631
-x632 x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 x647 x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655
-x656 -x657 -x658 -x659 -x660 x661 -x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 x670 -x671 -x672 -x673 -x674 -x675 -x676 -x677 x678 x679
-x680 -x681 -x682 -x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 -x691 -x692 -x693 x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702
x703 -x704 -x705 -x706 -x707 -x708 -x709 -x710 x711 -x712 -x713 -x714 -x715 x716 -x717 -x718 -x719 -x720 -x721 -x722 -x723 x724 -x725 -x726
-x727 -x728 -x729 -x730 x731 -x732 -x733 -x734 -x735 -x736 -x737 -x738 -x739 -x740 x741 -x742 -x743 -x744 -x745 -x746 -x747 -x748 -x749
-x750 x751 -x752 -x753 -x754 -x755 -x756 -x757 -x758 -x759 -x760 x761 -x762 -x763 -x764 -x765 -x766 x767 -x768 -x769 -x770 -x771 -x772 -x773
-x774 x775 -x776 -x777 -x778 -x779 -x780