PB'16 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark5
Best CPU time to get the best result obtained on this benchmark0.113981
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 5
Optimality of the best value was proved YES
Number of variables1296
Total number of constraints46
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)3
Number of constraints which are nor clauses,nor cardinality constraints43
Minimum length of a constraint4
Maximum length of a constraint150
Number of terms in the objective function 729
Biggest coefficient in the objective function 23832
Number of bits for the biggest coefficient in the objective function 15
Sum of the numbers in the objective function 524793
Number of bits of the sum of numbers in the objective function 20
Biggest number in a constraint 262138
Number of bits of the biggest number in a constraint 18
Biggest sum of numbers in a constraint 524793
Number of bits of the biggest sum of numbers20
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
cdcl-cuttingplanes OPT binary search 2016-05-01 (complete)4101439OPT5 0.113981 0.118314
cdcl-cuttingplanes OPT linear search 2016-05-01 (complete)4101440OPT5 0.430933 0.430659
NaPS 1.02 (complete)4101435OPT5 1.26281 1.26297
toysat 2016-05-02 (complete)4101433OPT5 6.85196 6.85557
minisatp 2012-10-02 git-d91742b (complete)4115280OPT5 9.15561 9.15789
Sat4j PB 2.3.6 Res+CP PB16 (complete)4101434OPT5 18.4202 11.3444
Sat4j PB 2.3.6 Resolution PB16 (complete)4101437OPT5 155.34 153.861
Open-WBO PB16 (complete)4101438? 189.335 190.432
Open-WBO-LSU PB16 (complete)4101436? 191.118 192.186

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 5
Solution found:
-x1 -x2 -x3 -x4 -x5 x6 x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 -x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134
-x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157
-x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180
-x181 -x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203
-x204 -x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226
-x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249
-x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272
-x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295
-x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318
-x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341
-x342 -x343 -x344 x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364
-x365 x366 x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387
-x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 x405 -x406 -x407 -x408 -x409 -x410
-x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 x421 x422 x423 -x424 -x425 -x426 x427 x428 x429 x430 x431 -x432 -x433 -x434
-x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457
-x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480
-x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503
-x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526
-x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549
-x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572
-x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595
-x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618
-x619 -x620 -x621 -x622 -x623 -x624 x625 x626 x627 x628 -x629 x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642
-x643 -x644 -x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 -x663 -x664 -x665
-x666 -x667 -x668 -x669 -x670 -x671 -x672 -x673 -x674 -x675 -x676 -x677 -x678 -x679 -x680 -x681 -x682 -x683 -x684 -x685 -x686 -x687 -x688
-x689 -x690 -x691 -x692 -x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704 -x705 -x706 -x707 -x708 -x709 -x710 -x711
-x712 -x713 -x714 -x715 -x716 -x717 -x718 -x719 -x720 -x721 -x722 -x723 -x724 -x725 -x726 -x727 -x728 -x729 -x730 -x731 -x732 -x733 -x734
-x735 -x736 -x737 -x738 -x739 -x740 -x741 -x742 -x743 -x744 -x745 -x746 -x747 -x748 -x749 -x750 -x751 -x752 -x753 -x754 -x755 -x756 -x757
-x758 -x759 -x760 -x761 -x762 -x763 -x764 -x765 -x766 -x767 -x768 -x769 -x770 -x771 -x772 -x773 -x774 -x775 -x776 -x777 -x778 -x779 -x780
-x781 -x782 -x783 -x784 -x785 -x786 -x787 -x788 -x789 -x790 -x791 -x792 -x793 -x794 -x795 -x796 -x797 -x798 -x799 -x800 -x801 -x802 -x803
-x804 -x805 -x806 -x807 -x808 -x809 -x810 -x811 -x812 -x813 -x814 -x815 -x816 -x817 -x818 -x819 -x820 -x821 -x822 -x823 -x824 -x825 -x826
-x827 -x828 -x829 -x830 -x831 -x832 -x833 -x834 -x835 -x836 -x837 -x838 -x839 -x840 -x841 -x842 -x843 -x844 -x845 -x846 -x847 -x848 -x849
-x850 -x851 -x852 -x853 -x854 -x855 -x856 -x857 -x858 -x859 -x860 -x861 -x862 -x863 -x864 -x865 -x866 -x867 -x868 -x869 -x870 -x871 -x872
-x873 -x874 -x875 -x876 -x877 -x878 -x879 -x880 -x881 -x882 -x883 -x884 -x885 -x886 -x887 -x888 -x889 -x890 -x891 -x892 -x893 -x894 -x895
-x896 -x897 -x898 -x899 -x900 -x901 -x902 -x903 -x904 -x905 -x906 -x907 -x908 -x909 -x910 -x911 -x912 -x913 -x914 -x915 -x916 -x917 -x918
-x919 -x920 -x921 -x922 -x923 -x924 -x925 -x926 -x927 -x928 -x929 -x930 -x931 -x932 -x933 -x934 -x935 -x936 -x937 -x938 -x939 -x940 -x941
-x942 -x943 -x944 -x945 -x946 -x947 -x948 -x949 -x950 -x951 -x952 -x953 -x954 -x955 -x956 -x957 -x958 -x959 -x960 -x961 -x962 -x963 -x964
-x965 -x966 -x967 -x968 -x969 -x970 -x971 -x972 -x973 -x974 -x975 -x976 -x977 -x978 -x979 -x980 -x981 -x982 -x983 -x984 -x985 -x986 -x987
-x988 -x989 -x990 -x991 -x992 -x993 -x994 -x995 -x996 -x997 -x998 -x999 -x1000 -x1001 -x1002 -x1003 -x1004 -x1005 -x1006 -x1007 -x1008
-x1009 -x1010 -x1011 -x1012 -x1013 -x1014 -x1015 -x1016 -x1017 -x1018 -x1019 -x1020 -x1021 -x1022 -x1023 -x1024 -x1025 -x1026 -x1027 -x1028
-x1029 -x1030 -x1031 -x1032 -x1033 -x1034 -x1035 -x1036 -x1037 -x1038 -x1039 -x1040 -x1041 -x1042 -x1043 -x1044 -x1045 -x1046 -x1047 -x1048
-x1049 -x1050 -x1051 -x1052 -x1053 -x1054 -x1055 -x1056 -x1057 -x1058 -x1059 -x1060 -x1061 -x1062 -x1063 -x1064 -x1065 -x1066 -x1067 -x1068
-x1069 -x1070 -x1071 -x1072 -x1073 -x1074 -x1075 -x1076 -x1077 -x1078 -x1079 -x1080 -x1081 -x1082 -x1083 -x1084 -x1085 -x1086 -x1087 -x1088
-x1089 -x1090 -x1091 -x1092 -x1093 -x1094 -x1095 -x1096 -x1097 -x1098 -x1099 -x1100 -x1101 -x1102 -x1103 -x1104 -x1105 -x1106 -x1107 -x1108
-x1109 -x1110 -x1111 -x1112 -x1113 -x1114 -x1115 -x1116 -x1117 -x1118 -x1119 -x1120 -x1121 -x1122 -x1123 -x1124 -x1125 -x1126 -x1127 -x1128
-x1129 -x1130 -x1131 -x1132 -x1133 -x1134 -x1135 -x1136 -x1137 -x1138 -x1139 -x1140 -x1141 -x1142 -x1143 -x1144 -x1145 -x1146 -x1147 -x1148
-x1149 -x1150 -x1151 -x1152 -x1153 -x1154 -x1155 -x1156 -x1157 -x1158 -x1159 -x1160 -x1161 -x1162 -x1163 -x1164 -x1165 -x1166 -x1167 -x1168
-x1169 -x1170 -x1171 -x1172 -x1173 -x1174 -x1175 -x1176 -x1177 -x1178 -x1179 -x1180 -x1181 -x1182 -x1183 -x1184 -x1185 -x1186 -x1187 -x1188
-x1189 -x1190 -x1191 -x1192 -x1193 -x1194 -x1195 -x1196 -x1197 -x1198 -x1199 x1200 x1201 -x1202 -x1203 -x1204 -x1205 -x1206 -x1207 -x1208
-x1209 -x1210 -x1211 -x1212 -x1213 -x1214 -x1215 -x1216 -x1217 -x1218 -x1219 -x1220 -x1221 -x1222 -x1223 -x1224 -x1225 -x1226 -x1227 -x1228
-x1229 -x1230 -x1231 -x1232 -x1233 -x1234 -x1235 -x1236 -x1237 -x1238 -x1239 -x1240 -x1241 -x1242 -x1243 -x1244 -x1245 -x1246 -x1247 -x1248
-x1249 -x1250 x1251 x1252 -x1253 -x1254 -x1255 -x1256 -x1257 -x1258 -x1259 -x1260 x1261 -x1262 -x1263 -x1264 -x1265 -x1266 -x1267 -x1268
-x1269 -x1270 -x1271 -x1272 -x1273 -x1274 -x1275 x1276 -x1277 -x1278 -x1279 -x1280 -x1281 -x1282 -x1283 -x1284 -x1285 -x1286 x1287 x1288
x1289 x1290 -x1291 -x1292 -x1293 -x1294 -x1295 x1296