PB'16 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryDEC-SMALLINT-LIN (no optimisation, small integers, linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark0
Best CPU time to get the best result obtained on this benchmark0.028994
Has Objective FunctionNO
(Un)Satisfiability was proved
Best value of the objective function
Optimality of the best value was proved
Number of variables756
Total number of constraints3542
Number of constraints which are clauses3537
Number of constraints which are cardinality constraints (but not clauses)5
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint27
Number of terms in the objective function 0
Biggest coefficient in the objective function 0
Number of bits for the biggest coefficient in the objective function 0
Sum of the numbers in the objective function 0
Number of bits of the sum of numbers in the objective function 0
Biggest number in a constraint 19
Number of bits of the biggest number in a constraint 5
Biggest sum of numbers in a constraint 46
Number of bits of the biggest sum of numbers6
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerCPU timeWall clock time
Open-WBO-LSU PB16 (complete)4097978SAT 0.028994 0.0295969
Open-WBO PB16 (complete)4097980SAT 0.031994 0.0370669
minisatp 2012-10-02 git-d91742b (complete)4113565SAT 0.232964 0.233097
NaPS 1.02 (complete)4097977SAT 0.25696 0.259103
Sat4j PB 2.3.6 Res+CP PB16 (complete)4097976SAT 3.3025 1.34897
Sat4j PB 2.3.6 Resolution PB16 (complete)4097979SAT 5.40318 4.69325
cdcl-cuttingplanes DEC 2016-05-01 (complete)4097981SAT 9.95349 9.95503
toysat 2016-05-02 (complete)4097975SAT 17.8753 17.8779

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 0
Solution found:
x1 x2 -x3 x4 -x5 x6 x7 x8 x9 x10 -x11 x12 x13 x14 -x15 x16 x17 -x18 x19 -x20 x21 x22 -x23 x24 x25 -x26 x27 x55 -x81 -x107 -x133 -x159 -x185
-x211 -x237 -x56 -x82 -x108 -x134 -x160 -x186 -x212 x238 x57 -x83 -x109 -x135 -x161 -x187 x213 -x239 -x58 -x84 -x110 -x136 -x162 x188 -x214
-x240 x59 -x85 -x111 -x137 -x163 -x189 -x215 -x241 -x60 -x86 -x112 x138 -x164 -x190 -x216 x242 x61 -x87 -x113 -x139 -x165 -x191 -x217 -x243
-x62 -x88 -x114 -x140 -x166 -x192 -x218 x244 -x63 -x89 -x115 -x141 -x167 -x193 x219 -x245 -x64 -x90 -x116 x142 -x168 x194 -x220 -x246 x65
-x91 -x117 -x143 -x169 -x195 -x221 x247 -x66 -x92 -x118 x144 -x170 -x196 -x222 -x248 -x67 -x93 -x119 -x145 -x171 x197 -x223 -x249 -x68 x94
-x120 -x146 -x172 -x198 -x224 x250 -x69 -x95 -x121 x147 -x173 -x199 x225 -x251 x70 -x96 -x122 -x148 -x174 x200 -x226 -x252 -x71 -x97 -x123
-x149 -x175 -x201 x227 -x253 -x72 -x98 -x124 -x150 -x176 x202 -x228 -x254 -x73 x99 -x125 -x151 -x177 -x203 -x229 x255 -x74 x100 -x126 -x152
-x178 -x204 x230 x256 -x75 -x101 -x127 -x153 -x179 x205 -x231 -x257 -x76 x102 -x128 -x154 -x180 x206 -x232 -x258 -x77 -x103 -x129 x155 -x181
-x207 -x233 -x259 -x78 -x104 -x130 x156 -x182 -x208 -x234 -x260 -x79 x105 -x131 -x157 -x183 -x209 -x235 -x261 -x80 x106 -x132 -x158 -x184
-x210 -x236 -x262 x263 -x264 -x265 -x266 x267 -x268 x269 -x270 -x271 x272 -x273 -x274 x275 -x276 -x277 -x278 -x279 x280 -x281 -x282 -x283
-x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306
-x307 -x308 x309 -x310 x311 x312 x313 x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330
-x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 x342 -x343 x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 x352 -x353 -x354
x355 x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 x369 -x370 -x371 x372 -x373 x374 x375 -x376 x377 -x378
-x379 x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 x395 -x396 -x397 -x398 -x399 -x400 -x401
-x402 -x403 -x404 -x405 -x406 -x407 -x408 x409 -x410 -x411 -x412 x413 x414 -x415 -x416 x417 x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425
-x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 x445 -x446 -x447 -x448
-x449 -x450 -x451 -x452 x453 -x454 -x455 -x456 x457 -x458 -x459 -x460 x461 x462 x463 x464 -x465 -x466 x467 x468 -x469 -x470 -x471 x472 -x473
x474 x475 -x476 x477 -x478 -x479 x480 x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 x494 -x495 x496 -x497
-x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520
-x521 -x522 -x523 -x524 -x525 -x526 -x527 x528 -x529 -x530 -x531 -x532 -x533 x534 -x535 x536 x537 x538 x539 -x540 -x541 -x542 x543 -x544
-x545 -x546 x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567
-x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577 x578 -x579 -x580 -x581 x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590
-x591 -x592 x593 -x594 -x595 -x596 x597 -x598 -x599 -x600 -x601 -x602 x603 -x604 -x605 -x606 x607 -x608 x609 -x610 x611 x612 x613 x614 -x615
-x616 -x617 x618 -x619 -x620 -x621 x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638
-x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652 x653 -x654 -x655 -x656 x657 -x658 x659 -x660 -x661 x662
-x663 -x664 -x665 -x666 x667 x668 -x669 -x670 -x671 x672 -x673 -x674 -x675 -x676 -x677 -x678 -x679 x680 -x681 -x682 -x683 -x684 -x685 -x686
-x687 -x688 -x689 -x690 -x691 -x692 -x693 -x694 -x695 x696 -x697 -x698 x699 -x700 x701 x702 -x703 x704 -x705 -x706 -x707 -x708 -x709 -x710
-x711 -x712 -x713 -x714 -x715 -x716 -x717 -x718 -x719 -x720 -x721 -x722 -x723 -x724 -x725 -x726 -x727 -x728 -x729 -x730 -x731 x732 -x733
x734 -x735 x736 x737 x738 x739 -x740 -x741 x742 x743 -x744 -x745 -x746 x747 -x748 -x749 -x750 -x751 -x752 -x753 -x754 x755 -x756 x28 -x29
-x30 -x31 -x32 -x33 -x34 -x35 -x36 x37 -x38 -x39 -x40 x41 -x42 x43 -x44 -x45 x46 -x47 x48 x49 -x50 x51 -x52 -x53 x54