PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-LIN (optimisation, small integers, linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark122
Best CPU time to get the best result obtained on this benchmark58.879
Has Objective FunctionYES
(Un)Satisfiability was proved
Best value of the objective function
Optimality of the best value was proved
Number of variables792
Total number of constraints1170
Number of constraints which are clauses1143
Number of constraints which are cardinality constraints (but not clauses)27
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint3
Maximum length of a constraint18
Number of terms in the objective function 666
Biggest coefficient in the objective function 80
Number of bits for the biggest coefficient in the objective function 7
Sum of the numbers in the objective function 18684
Number of bits of the sum of numbers in the objective function 15
Biggest number in a constraint 80
Number of bits of the biggest number in a constraint 7
Biggest sum of numbers in a constraint 18684
Number of bits of the biggest sum of numbers15
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3741408OPT122 58.879 58.888
PB10: pb_cplex 2010-06-29 (complete)3741405OPT122 66.4889 20.9123
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3741406OPT122 68.1586 68.1698
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692485OPT122 78.0751 78.1035
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693651OPT122 82.9094 82.9246
SCIP spx SCIP with SoPlex fixed (complete)3691319OPT122 83.3113 83.3264
PB07: minisat+ 1.14 (complete)3722107OPT122 131.383 131.403
clasp 2.0.6-R5325 (opt) (complete)3709487OPT122 154.229 154.256
PB12: minisatp 1.0-2-g022594c (complete)3723932OPT122 162.188 162.211
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3741402OPT122 178.215 178.263
npSolver 1.0 (fixed) (complete)3750788OPT122 316.878 316.921
pb2sat 2012-05-19 (complete)3696843OPT122 563.69 563.843
npSolver 1.0 (complete)3701631OPT122 586.273 586.386
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3689488OPT122 737.073 431.463
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3689489OPT122 738.232 731.971
SAT4J PB specific settings 2.3.2 snapshot (complete)3711083OPT122 1096.48 1090.87
pb2satCp2 2012-05-19 (complete)3695247OPT122 1287.44 1288.25
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3741404SAT (TO)122 1800.18 1001.24
pwbo 2.0 (complete)3704008SAT (TO)122 1800.54 900.318
PB11: Sat4j Res//CP 2.3.0 (complete)3741407SAT (TO)122 1800.6 1017.25
PB07: bsolo 3.0.17 (complete)3741399SAT (TO)127 1800.03 1802.31
pwbo 2.02 (complete)3726309SAT (TO)127 1800.12 900.316
PB07: PB-clasp 2007-04-10 (complete)3741398SAT (TO)127 1802.11 1803.42
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3741400SAT (TO)132 1800.01 1786.23
PB09: bsolo 3.1 (complete)3741401SAT137 1798 1798.31
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3741403SAT (TO)162 1800.3 1793.27
bsolo 3.2 (complete)3708321SAT167 1798 1798.28
PB07: Pueblo 1.4 (incomplete)3720768SAT182 1783.01 1783.29
wbo 1.72 (complete)3727830? 1799.55 1800.02
wbo 1.7 (complete)3705529? 1799.64 1800.03
npSolver inc-topDown (fixed) (complete)3747596? (problem) 2.18 2.30241
npSolver inc-topdown-quickBound (fixed) (complete)3752384? (problem) 2.19 2.34344
npSolver inc (fixed) (complete)3749192? (problem) 2.23 2.45495
npSolver inc-topdown-quickBound (complete)3703227? (problem) 122.25 122.418
npSolver inc-topDown (complete)3698439? (problem) 122.69 122.844
npSolver inc (complete)3700035? (problem) 123.79 123.929
toysat 2012-06-01 (complete)3725528? (TO) 1800.01 1800.31
toysat 2012-05-17 (complete)3707155? (TO) 1800.03 1800.31

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 122
Solution found:
x792 x791 x790 x789 x788 x787 x786 x785 x784 x783 x782 x781 x780 x779 x778 x777 x776 x775 x774 x773 x772 x771 x770 x769 x768 x767 x766 x765
x764 x763 x762 x761 x760 x759 x758 x757 x756 x755 x754 x753 x752 x751 x750 x749 x748 x747 x746 x745 x744 x743 x742 x741 x740 x739 x738 x737
x736 x735 x734 x733 x732 x731 x730 x729 x728 x727 x726 x725 x724 x723 x722 x721 x720 x719 x718 x717 x716 x715 x714 x713 x712 x711 x710 x709
x708 x707 x706 x705 x704 x703 x702 x701 x700 x699 x698 x697 x696 x695 x694 x693 x692 x691 x690 x689 x688 x687 x686 x685 x684 x683 x682 x681
x680 x679 x678 x677 x676 x675 x674 x673 x672 x671 x670 x669 x668 x667 -x666 -x665 -x664 x663 -x662 -x661 -x660 -x659 -x658 -x657 -x656 -x655
x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 x645 -x644 -x643 -x642 -x641 -x640 -x639 x638 -x637 -x636 -x635 -x634 -x633 -x632 -x631
-x630 x629 -x628 -x627 -x626 -x625 -x624 -x623 -x622 x621 -x620 -x619 -x618 -x617 -x616 -x615 -x614 -x613 -x612 -x611 -x610 -x609 x608 -x607
-x606 -x605 -x604 -x603 -x602 -x601 -x600 x599 -x598 -x597 -x596 -x595 x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 x585 -x584 -x583
-x582 -x581 -x580 -x579 -x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 x568 -x567 -x566 -x565 -x564 -x563 x562 -x561 -x560
-x559 -x558 -x557 -x556 -x555 -x554 x553 -x552 -x551 -x550 -x549 -x548 x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537
-x536 -x535 -x534 x533 -x532 -x531 -x530 -x529 -x528 -x527 -x526 -x525 x524 -x523 -x522 -x521 -x520 -x519 -x518 -x517 x516 -x515 -x514 -x513
-x512 -x511 -x510 -x509 -x508 x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490
-x489 -x488 -x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467
-x466 -x465 -x464 -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444
-x443 -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421
-x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398
-x397 x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375
-x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352
-x351 -x350 -x349 -x348 -x347 -x346 -x345 -x344 -x343 -x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329
-x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306
-x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296 -x295 -x294 -x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283
-x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275 -x274 -x273 -x272 -x271 -x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262 -x261 -x260
-x259 -x258 -x257 x256 -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 -x239 -x238 -x237
-x236 x235 -x234 -x233 -x232 -x231 -x230 -x229 -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214
-x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191
-x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168
-x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 -x156 -x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145
-x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 x123 -x122
-x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x105 -x104 -x103 -x102 -x101 -x100 -x99
-x98 -x97 -x96 -x95 -x94 -x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71
-x70 -x69 -x68 -x67 -x66 -x65 x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43
-x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16 -x15
-x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 -x1