PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-LIN (optimisation, small integers, linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark-63
Best CPU time to get the best result obtained on this benchmark1796.78
Has Objective FunctionYES
(Un)Satisfiability was proved
Best value of the objective function
Optimality of the best value was proved
Number of variables462
Total number of constraints5852
Number of constraints which are clauses5852
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint2
Number of terms in the objective function 462
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 462
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 462
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3741353SAT-63 1796.78 1797.08
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3741351SAT-62 1789.77 1790.07
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693664SAT-62 1796.76 1797.05
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692498SAT-62 1796.77 1797.07
SCIP spx SCIP with SoPlex fixed (complete)3691332SAT-62 1796.78 1797.08
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3741347SAT-62 1797.17 1797.46
PB07: minisat+ 1.14 (complete)3722102SAT (TO)-59 1800.02 1800.31
PB12: minisatp 1.0-2-g022594c (complete)3723945SAT (TO)-59 1800.09 1800.41
pwbo 2.02 (complete)3726322SAT (TO)-59 1800.17 900.431
pwbo 2.0 (complete)3704021SAT (TO)-59 1800.49 900.431
clasp 2.0.6-R5325 (opt) (complete)3709500SAT (TO)-55 1800.11 1800.41
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3741349SAT (TO)-55 1800.12 1011.75
PB11: Sat4j Res//CP 2.3.0 (complete)3741352SAT (TO)-55 1800.21 1024.43
PB09: bsolo 3.1 (complete)3741346SAT-54 1798 1798.34
bsolo 3.2 (complete)3708334SAT-54 1798.05 1798.39
PB07: bsolo 3.0.17 (complete)3741344SAT (TO)-54 1800.09 1800.41
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3689479SAT (TO)-54 1800.1 1789.66
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3689478SAT (TO)-54 1800.2 943.457
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3741348SAT (TO)-54 1800.34 1796.97
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3741345SAT (TO)-54 1800.57 1796.52
SAT4J PB specific settings 2.3.2 snapshot (complete)3711096SAT (TO)-53 1800.56 1788.85
PB07: Pueblo 1.4 (incomplete)3720763SAT-32 1783 1783.29
wbo 1.7 (complete)3705542? 1799.48 1800
wbo 1.72 (complete)3727843? 1799.71 1800.01
toysat 2012-05-17 (complete)3707168? (TO) 1800.02 1800.61
pb2sat 2012-05-19 (complete)3696856? (TO) 1800.07 1800.41
toysat 2012-06-01 (complete)3725541? (TO) 1800.08 1800.62
PB07: PB-clasp 2007-04-10 (complete)3741343? (TO) 1800.09 1892.22
npSolver inc-topDown (fixed) (complete)3747609? (TO) 1800.09 1800.41
pb2satCp2 2012-05-19 (complete)3695260? (TO) 1800.09 1800.51
npSolver inc-topdown-quickBound (fixed) (complete)3752397? (TO) 1800.09 1800.41
npSolver inc-topDown (complete)3698452? (TO) 1800.09 1800.41
npSolver inc (complete)3700048? (TO) 1800.1 1800.41
npSolver inc (fixed) (complete)3749205? (TO) 1800.1 1800.41
npSolver inc-topdown-quickBound (complete)3703240? (TO) 1800.11 1800.51
npSolver 1.0 (fixed) (complete)3750801? (TO) 1800.12 1800.51
npSolver 1.0 (complete)3701644? (TO) 1800.13 1800.41
PB10: pb_cplex 2010-06-29 (complete)3741350? (TO) 1800.39 515.617

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -63
Solution found:
-x462 -x461 x460 -x459 -x458 x457 -x456 -x455 -x454 -x453 -x452 -x451 x450 -x449 -x448 -x447 -x446 x445 -x444 -x443 -x442 x441 -x440 -x439
-x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 x429 -x428 -x427 x426 -x425 -x424 x423 -x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415
-x414 -x413 x412 -x411 -x410 -x409 -x408 x407 -x406 -x405 x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 x392 -x391
-x390 -x389 -x388 -x387 x386 -x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368
-x367 -x366 -x365 -x364 x363 -x362 x361 -x360 -x359 -x358 -x357 -x356 x355 -x354 -x353 -x352 -x351 -x350 x349 -x348 -x347 -x346 -x345 -x344
-x343 x342 -x341 x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320
-x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 x309 -x308 -x307 -x306 -x305 -x304 x303 -x302 x301 -x300 -x299 -x298 -x297 -x296
-x295 -x294 -x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 -x280 -x279 -x278 -x277 x276 -x275 -x274 -x273
-x272 -x271 -x270 -x269 -x268 x267 -x266 -x265 x264 -x263 -x262 -x261 -x260 -x259 -x258 x257 -x256 -x255 -x254 x253 -x252 -x251 -x250 -x249
-x248 x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 x239 -x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 -x230 x229 -x228 -x227 -x226 -x225
-x224 -x223 -x222 -x221 -x220 x219 -x218 -x217 x216 -x215 -x214 -x213 -x212 x211 -x210 -x209 -x208 x207 -x206 x205 -x204 -x203 -x202 -x201
-x200 -x199 x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 x186 x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177
-x176 -x175 -x174 -x173 -x172 -x171 x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 x158 -x157 -x156 -x155 -x154
-x153 x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145 -x144 x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131
-x130 -x129 x128 -x127 -x126 -x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110 -x109 -x108
-x107 -x106 x105 -x104 -x103 -x102 -x101 x100 x99 -x98 -x97 -x96 -x95 -x94 -x93 -x92 -x91 -x90 -x89 -x88 x87 -x86 -x85 x84 -x83 -x82 x81
-x80 -x79 -x78 x77 -x76 -x75 x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 x66 -x65 -x64 -x63 -x62 -x61 x60 -x59 -x58 -x57 -x56 -x55 x54 -x53 -x52
-x51 x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 -x42 -x41 x40 -x39 -x38 -x37 -x36 -x35 -x34 x33 -x32 -x31 -x30 -x29 -x28 x27 -x26 -x25 -x24 -x23
-x22 x21 -x20 -x19 -x18 -x17 -x16 -x15 -x14 -x13 -x12 -x11 -x10 -x9 x8 x7 -x6 -x5 x4 -x3 -x2 -x1